Refine search
Results 351-360 of 7,214
Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Show more [+] Less [-]Perceived green space quality, child biomarkers and health-related outcomes: A longitudinal study
2022
Putra, I Gusti Ngurah Edi | Astell-Burt, Thomas | Feng, Xiaoqi
Accumulating exposure to quality green space over time is posited to influence child health, yet longitudinal studies are scarce. This study aimed to examine the associations between trajectories of perceived green space quality and child health-related outcomes. We used data from 1874 childrenin the B-cohort of the Longitudinal Study of Australian Children who participated in the Child Health Checkpoint module at 11–12 years. Data on caregiver perceived green space quality measured biennially was assessed using discrete trajectory mixture models to group children by contrasting distributions in green space quality over time. Examination of associations between trajectory groups of perceived green space quality and child biomarkers (i.e., albumin-to-creatinine ratio, total, cholesterol, total triglycerides, and glucose), physical health and behavioural assessments (i.e., anthropometric measurements, blood pressure, sedentary behaviour, physical activity, sleep, aerobic work capacity, and general wellbeing), and health care use were assessed using multilevel models, adjusted for sociodemographic variables. Four perceived green space quality trajectories were identified: “decreasing quality from high to moderate”; “increasing quality from low to high”; “consistently high quality”; “consistently low quality”. Compared with consistently low levels of quality green space, adjusted models indicated consistently high-quality green space was associated with lower total triglycerides (β −0.13; 95%CI -0.25, −0.01). Lower odds of hospital admission was observed among children who accumulated quality green space over time (OR 0.45; 95%CI 0.23, 0.87). These associations were observed in boys only in sex-stratified analyses. Moreover, boys accumulating quality green space through time tended to have lower diastolic blood pressure (β −2.76; 95%CI -5.17, −0.35) and girls who experienced loss in quality green space tended to have a higher percentage of body fat (β 2.81; 95%CI 0.43, 5.20). Accumulating quality green space over time is important for various aspects of child health, with contrasting benefits by sex.
Show more [+] Less [-]Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter
2022
Belskii, Eugen | Lyakhov, Andrey
In recent decades, industrial emissions have been reduced in many countries, which provides an opportunity for the recovery of polluted ecosystems. However, our knowledge of the rate and factors facilitating the recovery of local bird populations after pollution abatement is incomplete. Long-term (1989–2021) annual observations on nest-box populations of a passerine bird, Ficedula hypoleuca, were used to analyze temporal dynamics of breeding parameters following a 50-fold reduction of industrial emissions from the Middle Ural copper smelter (MUCS) according to pollution zone, habitat, air temperature, and breeding density. In the heavily polluted (impact) zone (1–2 km of MUCS), egg and fledgling production were strongly impaired compared to the moderately polluted (buffer zone, 4–8 km of MUCS) and unpolluted control zone (16–27 km of MUCS). During the study period, the laying date advanced along with increasing spring air temperatures. The clutch size increased in the impact zone by 26%, in the buffer zone by 10%, and in control by 5%. The number of fledglings increased in the impact zone by 102% and the buffer zone by 17%. In the most recent year (2021), mean laying date, clutch size, fledgling production, and the frequency of nests with unhatched eggs in the impact zone did not reach the control level, whereas the frequency of nests with perished chicks did not differ among zones. Breeding parameters of birds in the impact zone improved slowly, likely due to the slow recovery of habitats. We conclude that bird reproduction may require many decades to recover fully in the heavily polluted zone.
Show more [+] Less [-]The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations
2022
Fang, Zheng | Gao, Yurong | Zhang, Fangbin | Zhu, Kaipeng | Shen, Zihan | Liang, Haixia | Xie, Yue | Yu, Chenglong | Bao, Yanping | Feng, Bo | Bolan, Nanthi | Wang, Hailong
Garden pruning waste is becoming a problem that intensifies the garbage siege. It is of great significance to purify polluted water using biochar prepared from garden pruning waste. Herein, the interaction mechanism between BPS and oriental plane tree biochar (TBC) with different surface functional groups was investigated by adsorption experiments, spectroscopic analysis and theoretical calculations. Adsorption kinetics and isotherm of BPS on TBC can be satisfactorily fitted into pseudo-second-order kinetic and Langmuir models, respectively. A rapid adsorption kinetic toward BPS was achieved by TBC in 15 min. As compared with TBC prepared at low temperature (300 °C) (LTBC), the maximum adsorption capacity of TBC prepared at high temperature (600 °C) (HTBC) can be significantly improved from 46.7 mg g⁻¹ to 72.9 mg g⁻¹. Besides, the microstructure and surface functional groups of HTBC were characterized using SEM, BET-N₂, and XPS analysis. According to density functional theory (DFT) theoretical calculations, the higher adsorption energy of HTBC for BPS was mainly attributed to π-π interaction rather than hydrogen bonding, which was further supported by the analysis of FTIR and Raman spectra as well as the adsorption thermodynamic parameters. These findings suggested that by improving π-π interaction through high pyrolysis temperature, BPS could be removed and adsorbed by biochar with high efficacy, cost-efficiency, easy availability, and carbon-negative in nature, contributing to global carbon neutrality.
Show more [+] Less [-]Nexus between potentially toxic elements’ accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models
2022
Hossain Bhuiyan, Mohammad Amir | Chandra Karmaker, Shamal | Saha, Bidyut Baran
Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements’ (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60–70). Except for Zn and Cd, other PTEs were enriched in 30–60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46–72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110–2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.
Show more [+] Less [-]Association of air pollution exposure with low arousal threshold obstructive sleep apnea: A cross-sectional study in Taipei, Taiwan
2022
Qiu, Hong | Liu, Wen-Te | Lin, Shang-Yang | Li, Zhi-Yuan | He, Yan-Su | Yim, Steve Hung Lam | Wong, Eliza Lai-Yi | Chuang, Hsiao-Chi | Ho, Kin-Fai
Emerging evidence witnesses the association of air pollution exposure with sleep disorders or the risk of obstructive sleep apnea (OSA); however, the results are not consistent. OSA patients with or without a low arousal threshold (LAT) have different pathology and therapeutic schemes. No study has evaluated the potential diverse effects of air pollution on the phenotypes of OSA. The current study aimed to evaluate the associations of short-term and long-term exposure to air pollution with sleep-disordered measures and OSA phenotypes. This cross-sectional study consisted of 4634 participants from a sleep center in Taipei from January 2015 to April 2019. The personal exposure to ambient PM₂.₅ and NO₂ was assessed by a spatial-temporal model. Overnight polysomnography was used to measure the sleep parameters. According to a developed clinical tool, we defined the low arousal threshold (LAT) and identified the OSA patients with or without LAT. We applied a generalized linear model and multinomial logistic regression model to estimate the change of sleep measures and risk of the OSA phenotypes, respectively, associated with an interquartile range (IQR) increment of personal pollution exposure after adjusting for the essential confounders. In the single-pollutant model, we observed the associations of NO₂ with sleep-disordered measures by decreasing the total sleep time, sleep efficiency, extending the time of wake after sleep onset, and the association of NO₂ with the increased risk of LAT OSA by around 15%. The two-pollutant model with both long-term and short-term exposures confirmed the most robust associations of long-term NO₂ exposure with sleep measures. An IQR increment of NO₂ averaged over the past year (6.0 ppb) decreased 3.32 min of total sleep time and 0.85% of sleep efficiency. Mitigating exposure to air pollution may improve sleep quality and reduce the risk of LAT OSA.
Show more [+] Less [-]Relationship between thyroid hormone parameters and exposure to a mixture of organochlorine pesticides, mercury and nutrients in the cord blood of newborns
2022
Wang, Ju | Cao, Lu-Lu | Gao, Zhen-Yan | Zhang, Hong | Liu, Jun-Xia | Wang, S. S. (Su Su) | Pan, Hui | Yan, Chong-Huai
The fetus is prenatally exposed to a mixture of organochlorine pesticides (OCPs), mercury (Hg), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and selenium (Se) through maternal seafood consumption in real-life scenario. Prenatal exposure to these contaminants and nutrients has been suggested to affect thyroid hormone (TH) status in newborns, but the potential relationships between them are unclear and the joint effects of the mixture are seldom analyzed. The aim of the study is to investigate the associations of prenatal exposure to a mixture of OCPs, Hg, DHA, EPA and Se with TH parameters in newborns. 228 mother-infant pairs in Shanghai, China were included. We measured 20 OCPs, total Hg, DHA, EPA and Se in cord blood samples as exposure variables. The total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) levels and the FT3/FT4 ratio in cord serum were determined as outcomes. Using linear regression models, generalized additive models and Bayesian kernel machine regression, we found dose-response relationships of the mixture component with outcomes: among the contaminants, p,p'-DDE was the most important positive predictor of TT3, while HCB was predominantly positively associated with FT3 and the FT3/FT4 ratio, indicating different mechanisms underlying these relationships; among the nutrients, EPA was first found to be positively related to the FT3/FT4 ratio. Additionally, we found suggestive evidence of interactions between p,p'-DDE and HCB on both TT3 and FT3, and EPA by HCB interactions for TT3, FT3 and FT3/FT4 ratio. However, the overall effects of the mixture on thyroid hormone parameters were not significant. Our result suggests that prenatal exposure to p,p’-DDE, HCB and EPA as part of a mixture might affect thyroid function of newborns in independent and interactive ways. The potential biological mechanisms merit further investigation.
Show more [+] Less [-]Effects of graphene oxide nanosheets in the polychaete Hediste diversicolor: Behavioural, physiological and biochemical responses
2022
Pires, Adília | Figueira, Etelvina | Silva, M.S.S. | Sá, Carina | Marques, Paula A.A.P.
Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources – soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.
Show more [+] Less [-]Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize
2022
Zhang, Hao | Qian, Yingying | Fan, Dandan | Tian, Yanning | Huang, Xing
Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0–22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.
Show more [+] Less [-]AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver
2022
Wang, Huan | Wang, Anqi | Wang, Xinqiao | Zeng, Xiangyin | Xing, Houjuan
The experiment was conducted to investigate the effects of Cadmium (Cd) on growth performance, blood biochemical parameters, oxidative stress, hepatocyte apoptosis and autophagy of weaned piglets. A total of 12 healthy weaned piglets were randomly assigned to the control and the Cd group, which were fed with a basal diet and the basal diet supplemented with 15 ± 0.242 mg/kg CdCl₂ for 30 d, respectively. Our results demonstrated that Cd significantly decreased final body weight, average daily feed intake (ADFI), average daily gain (ADG) and increased feed-to-gain (F/G) ratio (P < 0.05). For blood biochemical parameters, Cd treatment significantly decreased the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), total protein, albumin, copper content and iron content (P < 0.05). In addition, liver injury was observed in the Cd-exposed group. Our results also demonstrated that Cd exposure contributed to the production of ROS, activated the AMPK/PPAR-γ/NF-κB pathway (increasing the expressions of P-AMPK/AMPK, NF-κB, I-κB-β, COX-2, and iNOS, decreasing the expressions of PPAR-γ and I-κB-α), finally induced autophagy (increasing the expressions of Beclin-1, the ratio of LC3-II/LC3-I and p62), and apoptosis (increasing the expressions of Bax, Bak, Caspase-9, and Caspase-3, decreasing the expression of Bcl-2). Overall, these findings revealed the vital role of AMPK/PPAR-γ/NF-κB pathway in Cd-induced liver apoptosis and autophagy, which provided deeper insights into a better understanding of Cd-induced hepatotoxicity.
Show more [+] Less [-]