Refine search
Results 371-380 of 62,642
Health Impacts Assessment due to PM2.5, PM10 and NO2 Exposure in National Capital Territory (NCT) Delhi Full text
2020
Afghan, F. R. | Patidar, S. K.
The human health impacts caused due to exposure to criteria outdoor air pollutants PM2.5, PM10 and NO2 were assessed in present study. The human health effects associated with exposure to atmospheric air pollution in NCT Delhi were estimated utilizing the AirQ+ v1.3 software tool integrated with Ri-MAP during the study period 2013-2018 considering 80% of the whole population subjected to air pollution exposure. Taking into account the World Health Organization (WHO) (2016) guidelines, the inter-annual average concentrations of PM2.5, PM10, and NO2, concentration response relationships and population attributable fraction (AF) or impact fraction (IF) concepts were adopted. The excess number of cases (ENCs) of Mortality (all) natural cases 30+ years, acute lower respiratory infection (ALRI), lung cancer (LC), ischaemic heart disease (IHD), stroke, incidence of chronic bronchitis in children, postneonatal infant mortality, chronic obstructive pulmonary disease (COPD), prevalence of bronchitis in children, incidence of asthma symptoms in asthmatic children in the year 2013 were 48332, 2729, 5645, 26853, 22737, 120754, 34510, 5125, 9813, 3054, 17203 and 682, respectively. Within half of a decade i.e. in year 2018, the ENCs of Mortality (all) natural cases 30+ years, ALRI, COPD, LC, IHD, stroke, incidence of chronic bronchitis in children, postneonatal infant mortality, prevalence of bronchitis in children, incidence of asthma symptoms in asthmatic children increased significantly and were 72254, 3471, 6547, 7568, 32358, 28233, 150110, 50810, 9019, 862, 29570 and 1189, respectively.
Show more [+] Less [-]O-Anisidine Degradation by Fenton’s Reagent and Reaction Time Estimation Full text
2020
Chaturvedi, N. K. | Katoch, S. S.
O-Anisidines (OAs) are extensively used as an intermediate for chemical reactions to produce various triphenylmethane and azo dyes, and also in manufacturing numerous pigments. They are found to be highly toxic and have carcinogenic properties, so it is imperative to treat OA solutions before disposal. In this study a promising approach to degrade OA solutions has been carried out using Fenton’s reagent. Oxidation trials were conducted for 24 hours and various parameters – OA removal, pH, effect of H2O2 and Fe2+, and COD removal – were analysed to understand the oxidative degradation of OA. For varying initial OA concentrations, the OA and COD removal efficiencies of 72 to 85% and 62 to 74%, respectively, were obtained at pH = 3, and at different optimum H2O2 and Fe2+ doses. Lower initial concentrations of OA showed better removal efficiencies. The reaction time was estimated to 360 minutes after which there was negligible degradation occurs.
Show more [+] Less [-]Development of the Ethyl Ester from Jatropa Oil through Response Surface Methodology Approach Full text
2020
Gautam, R. | Ansari, N. | Sharma, A. | Singh, Y.
With an increase in the global pollution, there is requirement for an alternative to the fossil fuels. Non-edible vegetable oils are highly promising for producing liquid fuels like diesel. Jatropha is a potential feedstock for biodiesel, currently utilized in India and many parts of the world. The optimization of reaction conditions such as temperature, time, catalyst and molar ratio for biodiesel production is important in reactor design. However, oils have characteristics reaction properties for optimum yield. Therefore, there is the need to identify such parameters in Jatropha oil ethyl esters production. Preparation of biodiesel from Jatropha oil ethyl esters using conventional homogeneous process. Optimization of Jatropha ethyl esters using Response surface methodology is done and data so obtained are fed to the design experiment software for analysis. The Jatropha ethyl esters yield was 92.62%. Maximum production of Jatropha oil ethyl ester was achieved with the process parameters viz molar ratio 8.5, reaction time 89.67min, reaction temperature 70.1°C and catalyst.0.62wt%.
Show more [+] Less [-]Nitrate Bioremoval by Phytotechnology using Utricularia aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India Full text
2020
Usharani, K. | Keerthi, K.V.
The aim of this study was to compare the selected aquatic plants ability to remove nitrate from wastewater. Excess of these nutrients in water can directly affect human health (methemoglobinaemia) or indirectly through the products of secondary pollution include eutrophication. Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, common substances of these elements must be monitored and managed. Spectrophotometric technique was commonly used for quick and simple analyses of nutrients in waste water. There are calibration curves for each nutrient and for the determination of their concentration. Phytotechnology is one of the biological wastewater treatment methods or processes to eliminate nitrate contaminant from aquatic system. So as to avoid the eutrophic formation of fresh water and to determine the efficiency of nitrate utilization by specific aquatic plants which include Utricularia aurea and Salvinia molesta were collected from a eutrophic lake at Theerthamkara, Kerala. The samples were allowed to grow in nitrate solution for about one month at different concentrations. The optical density (OD) of nitrate solution at 410 nm was measured on alternative days of the experiment by using UV spectrophotometer. After 33 days of treatment periods, the maximum amount of nitrate removed in terms of percentage was found to be 95% by Utricularia aurea and 92% by Salvinia molesta at 100 ppm nitrate concentration. The results revealed that the aquatic plant (carnivorous) based system of phytotechnology was productively removed the nitrate load from the synthetic wastewater containing nitrate.
Show more [+] Less [-]Removal of Methyl Orange Dye from Aqueous Solution by a Low-Cost Activated Carbon Prepared from Mahagoni (Swietenia mahagoni) Bark Full text
2020
Ghosh, G. C. | Chakraborty, T. K. | Zaman, S. | Nahar, M. N. | Kabir, A. H. M. E.
This study utilized Swietenia mahagoni bark–a wood processing industry waste, for the preparation of activated carbon, and then investigated for the removal of methyl orange (MO) dye by the Swietenia mahagoni bark activated carbon (SMBAC). The effect of pH (3–10), adsorbent dose (1–30 g/L), initial MO dye concentration (10–100 mg/L), and contact time (1–240 min) were evaluated. The surface morphology of the SMBAC was characterized by using fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Maximum removal efficiency of MO by SMBAC was 92%, when initial MO dye concentration was 10 mg/L, pH 3.0, adsorbent dose 10.0 g/L and 120 min equilibrium contact time. The adsorption data fitted well with the Freundlich (R2=0.997) and Halsey (R2=0.997) isotherm models than the Langmuir (R2=0.979) model, and express the multilayer adsorption on heterogeneous surface. The maximum adsorption capacity was 6.071 mg/g. The kinetics data were fitted well to pseudo-second order model (R2=0.999) and more than one process were involved during adsorption mechanism but film diffusion was the potential rate controlling step. The study results showed that SMBAC adsorbed MO effectively, and could be used as a low cost potential bioadsorbent for the removal of anionic dyes in wastewater treatment.
Show more [+] Less [-]Biofilm Formation by the Hexavalent Chromium Removing Strain Streptococcus salivarius: in Vitro Approach on Abiotic Surfaces Full text
2020
Ait-Meddour, A. | Abbas, N. | Ouled-Haddar, H. | Sifour, M. | Bendjeddou, K. | Idoui, T.
In this study, a strain of lactic acid bacteria Streptococcus salivarius was studied for its capacity to remove hexavalent chromium (Cr (VI)) from a liquid medium and to form biofilm. Both properties are useful for using the strain in bioremediation of metal-contaminated effluents. For biofilm formation capacity, three methods were used: the tube method (TM), the Congo red agar method (CRA) and adherence to polystyrene tissue culture plate method (TCP). S. salivarius, showed a positive-biofilm and a correlation between the three methods was noted. The bacterial surface hydrophobicity was studied using the microbial adhesion to solvents method (MATS). On AISI-316 L stainless steel, the strain with a hydrophobic surface showed a good adhesion on this support after 18 h incubation. The colonization of the supports and the biofilms formation by the bacterial cell was observed using scanning electron microscopy (SEM). The minimum inhibitory concentration (MIC) of Cr(VI) on S. salivarius was determined on MRS broth, it was relatively high and equal to 400mg/l. In addition, it displayed a remarkable capacity to reduce Cr(VI) concentration on the liquid medium containing initially 50 mg/l of Cr(VI) ; the percent removal rate was equal to approximately 42% after 72 h of incubation at 37 °C. In addition to its GRAS status, the obtained results suggested that S. salivarius could be successfully used in Cr(VI) bioremediation.
Show more [+] Less [-]The Effectiveness of the Ballast Water Exchange Method in Removal of the Heavy Metals in the Ballast Tanks of the Ships, Bushehr Port- Persian Gulf Full text
2020
Tolian, R. | Javadzadeh, N. | Sanati, A. M. | Mohammadi Roozbahani, M. | Noorinejad, M.
Ships transport about 80 percent of world trade and transfer approximately three to five billion tons of ballast water internationally every year. Due to the likely presence of pollutants, the ballast water discharged by ships can have negative effects on aquatic ecosystems. This study was conducted on 10 ships that entered the Bushehr port to determine the effectiveness of the ballast water exchange method and also to specify the contents of heavy metals (Ni, Cd, Pb and Cu) in the water and sediment of the ships’ ballast tanks. The samples were collected from January 2017 to July 2018 during a cold and a hot season. The results indicate the values of heavy metals in the samples in this order: Ni> Cu > Pb > Cd. The heavy metals concentrations in the sediment samples did not exceed the standard of the National Oceanic and Atmospheric Administration (NOAA). Whereas, Cu and Ni in all water samples and Cd in samples 2 and 7 exceeded the NOAA quality standard value. A correlation analysis of the metals showed that the sources of heavy metals vary in water and sediment samples, except for Pb and Cu in sediment samples which a positively significant relationship were observed. The results also revealed that the ballast water exchange method cannot by itself be effective and an efficient management together with continuous monitoring seems to be essential to prevent pollution of the ballast tanks of the ships entering the Bushehr port.
Show more [+] Less [-]Overall D. melanogaster Cohort Viability as A Pollution Indicator of the Atmospheric Air of Urban Landscapes Full text
2020
Rudenko, S. S. | Leheta, U. V. | Rudenko, V. P. | Kostyshyn, S. S. | Bialyk, V. D.
The method of air pollution level evaluation of urban landscapes on the basis of D. melanogaster cohort analysis has been suggested. The method implies the binding to the landscape areas of the city. Within each landscape area traps and cultivators for D. melanogaster have been installed in sanitary-protective zones of various enterprises as well as on the background territory with the least level of anthropogenic load serving as the control. Based on specifically elaborated technique for field conditions, the amount of eggs, third instar larvae, pupae and imago has been calculated. Then, using the computer program ImageJ, the square under the curves of cohort survival has been determined which is considered overall cohort viability (OCVD.m). The previously mentioned indicator considers cohort survival at all stages of ontogenesis. In addition, the expressed in percentage indicator of oppression (IO OCVD.m) in relevance to the control OCVD. m affects the level of air pollution of urban landscapes by emissions of various enterprises. The relevance between these indicators is determined by a four-level scale elaborated specifically for the purpose. The method has been tested based on technogenic landscapes of Chernivtsi, Ukraine. The sensitivity of the suggested indicator for a wide range of pollutants has been proved and its ability to respond to different levels of greening of similar enterprises has been shown.
Show more [+] Less [-]Chronological Studies of Traffic Pollution Using Elemental Analysis of Tree Rings: Case Study of Haatso-atomic Road Full text
2020
Edusei, G. | Tandoh, J. B. | Edziah, R. | Gyampo, O.
Mitigation of atmospheric pollution has been a topic of concern over the past decades. In this study, tree rings have been used to reconstruct past climates as well as to assess the effects of recent climatic and environmental changes on tree growth. Vehicular emission is one of the major sources of pollutants in the atmosphere and this study focused on the Haatso-Atomic road which over the years has been a spot for heavy vehicular traffic. Swietenia mahagoni (Mahogany) tree was logged and the rings counted and age determined to be 61 years spanning from 1957 to 2018. X-ray fluorescence (XRF) was used to investigate the presence of the following heavy metals. Heavy metals (Cu, Mn, Zn, Pb, Cd and Ni) which ranged from (3.15—9.84mg/kg), (2.58 – 5.49 mg/kg), (8.18 – 15.78mg/kg), (0.12—0.60 mg/kg), (0.01—0.09 mg/kg) and (0.10 – 0.99 mg/kg) respectively, from vehicular emissions were determined for annual rings spanning from 1957 to 2018 and surprisingly an increasing trend was observed with some the heavy metals exceeding WHO guidelines. Tree growth rates were calculated through ring width measurements and related to annual precipitation data spanning over the sampling period. It was observed that wet seasons correlate with high growth rates of trees while low precipitations seasons related to low or no growth rate of trees.
Show more [+] Less [-]Artificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments Full text
2020
Janati, M. | Kolahdoozan, M. | Imanian, H.
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. These phenomena depend on the overall interaction among gravity, viscosity, surface tension and interfacial tension of oil in water bodies. In the current study, Artificial Neural Network (ANN) models have been designed and trained for the prediction of oil spreading and advection under different hydrodynamic conditions. In this regard, results obtained from a multiphase Lagrangian numerical model are deployed to train ANN model. The mentioned numerical model which is based on the moving particle semi-implicit (MPS) method is developed in the earlier stage of the study. In this research study, the MPS numerical model is first validated and verified against the analytical formulas which are based on experimental data cited in the literature. Then, various hydrodynamic conditions and oil spill scenarios were chosen to obtain different numerical model results. Finally, numerical model results are then deployed for training ANN model to provide a useful tool for urgent prediction of oil slick trajectory in order to manage the oil slick transport in the coastal environments.
Show more [+] Less [-]