Refine search
Results 371-380 of 7,921
Monitoring urban black-odorous water by using hyperspectral data and machine learning
2021
Sarigai, | Yang, Ji | Zhou, Alicia | Han, Liusheng | Li, Yong | Xie, Yichun
Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
Show more [+] Less [-]Spatio-temporal variation of microplastic along a rural to urban transition in a tropical river
2021
Chen, Hui Ling | Gibbins, Christopher Neil | Selvam, Sivathass Bannir | Ting, Kang Nee
Microplastic pollution is widely recognised as a global issue, posing risks to natural ecosystems and human health. The combination of rapid industrial and urban development and relatively limited environmental regulation in many tropical countries may increase the amount of microplastic entering rivers, but basic data on contamination levels are lacking. This is especially the case in tropical South East Asian countries. In this paper, the abundance, composition and spatio-temporal variation of microplastic in the Langat River, Malaysia, were assessed, and the relationship between microplastic concentration and river discharge was investigated. Water samples were collected over a 12-month period from 8 sampling sites on the Langat, extending from forested to heavily urbanised and industrial areas. All 508 water samples collected over this period contained microplastic; mean concentration across all sites and times was 4.39 particles/L but extended up to 90.00 particles/L in some urban tributaries. Most microplastics were secondary in origin, and dominated by fibres. Microplastic counts correlated directly with river discharge, and counts increased and decreased in response to changes in flow. A time-integrated assessment of the microplastic load conveyed by the Langat suggested that the river is typically (50 % of the time) delivering around 5 billion particles per day to the ocean. The positive correlation between the concentration of microplastics and suspended sediments in the Langat suggested that continuously logging turbidity sensors could be used to provide better estimates of microplastic loads and improve assessment of human and ecological health risks.
Show more [+] Less [-]Powdered activated carbon (PAC) amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions
2021
Pagnozzi, Giovanna | Carroll, Sean | Reible, Danny D. | Millerick, Kayleigh
Capping represents an efficient and well-established practice to contain polycyclic aromatic hydrocarbons (PAHs) in sediments, reduce mobility, and minimize risks. Exposure to PAHs can encourage biodegradation, which can improve the performance of capping. This study investigates biodegradation of naphthalene (a model PAH) in highly reducing, sediment-like environments with amendment of different capping materials (PAC and sand). Microcosms were prepared with sediment enrichments, sulfate as an electron acceptor, and naphthalene. Results show that PAC stimulates naphthalene biodegradation and mineralization, as indicated by production of ¹⁴CO₂ from radiolabeled naphthalene. Mineralization in PAC systems correlates with the enrichment of genera (Geobacter and Desulfovirga) previously identified to biodegrade naphthalene (Spearman’s, p < 0.05). Naphthalene decay in sand and media-free systems was not linked to biodegradation activity (ANOVA, p > 0.05), and microbial communities were correlated to biomass yields rather than metabolites. Naphthalene decay in PAC systems consists of three stages with respect to time: latent (0–88 days), exponential decay (88–210 days), and inactive (210–480 days). This study shows that PAC amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions and provides a kinetic and metagenomic characterization of systems demonstrating naphthalene decay.
Show more [+] Less [-]Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport
2021
Xiang, Yan | Zhang, Tianshu | Liu, Jianguo | Wan, Xin | Loewen, Mark | Chen, Xintong | Kang, Shichang | Fu, Yibin | Lv, Lihui | Liu, Wenqing | Cong, Zhiyuan
Atmospheric aerosols play a crucial role in climate change, especially in the Himalayas and Tibetan Plateau. Here, we present the seasonal and diurnal characteristics of aerosol vertical profiles measured using a Mie lidar, along with surface black carbon (BC) measurements, at Mt. Qomolangma (QOMS), in the central Himalayas, in 2018–2019. Lidar-retrieved profiles of aerosols showed a distinct seasonal pattern of aerosol loading (aerosol extinction coefficient, AEC), with a maximum in the pre-monsoon (19.8 ± 22.7 Mm⁻¹ of AEC) and minimum in the summer monsoon (7.0 ± 11.2 Mm⁻¹ of AEC) seasons. The diurnal variation characteristics of AEC and BC were quite different in the non-monsoon seasons with enriched aerosols being maintained from 00:00 to 10:00 in the pre-monsoon season. The major aerosol types at QOMS were identified as background, pollution, and dust aerosols, especially during the pre-monsoon season. The occurrence of pollution events influenced the vertical distribution, seasonal/diurnal patterns, and types of aerosols. Source contribution of BC based on the weather research and forecasting chemical model showed that approximately 64.2% ± 17.0% of BC at the QOMS originated from India and Nepal in South Asia during the non-monsoon seasons, whereas approximately 47.7% was from local emission sources in monsoon season. In particular, the high abundance of BC at the QOMS in the pre-monsoon season was attributed to biomass burning, whereas anthropogenic emissions were the likely sources during the other seasons. The maximum aerosol concentration appeared in the near-surface layer (approximately 4.3 km ASL), and high concentrations of transported aerosols were mainly found at 4.98, 4.58, 4.74, and 4.88 km ASL in the pre-monsoon, monsoon, post-monsoon, and winter seasons, respectively. The investigation of the vertical profiles of aerosols at the QOMS can help verify the representation of aerosols in the air quality model and satellite products and regulate the anthropogenic disturbance over the Tibetan Plateau.
Show more [+] Less [-]Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone
2021
Ma, Xiaoling | Wang, Wenlong | Sun, Chenggong | Sun, Jing
Absorption is an eminent technology for volatile organic compounds (VOCs) elimination with the merits of high efficiency and low cost. Absorbent plays a critical role in the absorption process, and the thermal stability, saturation capacity, and regeneration performance should be concerned. As a kind of green and eco-friendly solvent, ionic liquid (IL) is expected to be a substitute for the conventional VOCs absorbent. In this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF₆]) is employed to absorb the modeling VOCs (toluene and acetone). Moreover, the used [Bmim][PF₆] is recovered by thermal distillation and the reusability is then conducted by consecutive batch experiments. Based on that, the thermal stability of [Bmim][PF₆] is comprehensively examined, in which the kinetic and thermodynamic parameters are also calculated. Results reveal that [Bmim][PF₆] owned promising toluene absorption performance with inlet concentration of 3000 mg/m³ and flow rate of 300 mL/min at 20 °C, it possesses the saturated adsorption capacity of 5.16 mg/g. [Bmim][PF₆] also shows satisfying thermal stability up to 610 K. In addition, thermal distillation is proved to be a reliable regeneration route on account of the recovered [Bmim][PF₆] remained satisfying capacity even after five cycles.
Show more [+] Less [-]Eco-friendly yield-scaled global warming potential assists to determine the right rate of nitrogen in rice system: A systematic literature review
2021
Islam Bhuiyan, Mohammad Saiful | Rahamāna, Ājijura | Kim, Gil Won | Das, Suvendu | Kim, Pil Joo
Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH₄ and N₂O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH₄ emissions and N rate and strong positive correlation between N₂O emissions and N rate. Compared to control the low N dose emitted less (23%) CH₄ whereas high N dose emitted higher (63%) CH₄ emission. The highest N₂O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH₄ and N₂O, respectively. The mean GWP of CH₄ and N₂O emissions from rice was 5758 kg CO₂ eq ha⁻¹. The least yield-scaled GWP (0.7565 (kg CO₂ eq. ha⁻¹)) was recorded at 190 kg N ha⁻¹ that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win–win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.
Show more [+] Less [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Show more [+] Less [-]Trace metals at the tree-litter-soil- interface in Brazilian Atlantic Forest plots surrounded by sources of air pollution
2021
Nakazato, Ricardo Keiichi | Lourenço, Isabela S. | Esposito, Marisia P. | Lima, Marcos E.L. | Ferreira, Mauricio L. | Campos, Rafaela de O.A. | Rinaldi, Mirian C.S. | Domingos, Marisa
Passive biomonitoring was applied in four Atlantic forest plots in southeast Brazil, affected by different levels of trace metal pollution (OP site located in Minas Gerais State and PEFI, PP and STG located in São Paulo State). Native tree species were selected as biomonitors according to their abundance in each plot and successional classification. Current trace metal concentrations in total suspended particles, leaves of non-pioneer (NPi) and pioneer (Pi) species, topsoil (0–20 cm) and litter and concentration ratios at the plant/soil interface were analyzed to verify the atmosphere-plant-soil interactions, basal concentrations, spatial variations and metal accumulation at the ecosystem level. Redundant analysis helped to identify similar characteristics of metal concentrations in PP and PEFI, which can be influenced by the high concentrations of elements related to anthropogenic inputs. Analysis of variance and multivariate statistics indicated that the trees of OP presented higher concentrations of Cr, Fe, Mn and Ni than those in the other sites. High enrichment of Cd, Fe, Ni in non-pioneer plants indicated that the PP forest (initially considered as the least polluted) has still been affected by metal pollution. Soil collected in STG was enriched by all elements, however these elements were low available for plant uptake. Metal deposited in leaves and litter was an important sink for soil cycling, nevertheless, these metals are not bioavailable in most cases. Non-pioneer tree species revealed to be more appropriate than pioneer species to indicate the current panorama of the contamination and bioavailability levels of trace metals in the tree community-litter-soil interface of the Atlantic forest remnants included in this study.
Show more [+] Less [-]Background concentration, risk assessment and regulatory threshold development: Polycyclic aromatic hydrocarbons (PAH) in Milwaukee, Wisconsin surface soils
2021
Siemering, Geoffrey S. | Thiboldeaux, Robert
Inputs of polycyclic aromatic hydrocarbons (PAHs) of regulatory interest from diffuse atmospheric sources within urban areas frequently elevate local soil concentrations to levels requiring remediation despite the lack of in-situ contamination. This research sought to determine the distribution and potential health effects of aerially deposited PAHs in soil within the urban core of metropolitan Milwaukee, Wisconsin, U.S.A. as part of a soil regulatory standards reevaluation. Park areas (n = 27) identified as undisturbed for 80+ years, containing no fill material, and receiving only atmospheric deposition were selected for composite surface and 92 cm core soil sample collection (n = 295). Samples were analyzed for the 16 USEPA priority PAHs, 1- and 2- methylnapthalene and ancillary soil properties. Soil core and ancillary data confirm lack of site disturbance. PAH diagnostic ratios and homologue summations indicate that diffuse multiple point source emissions contribute equally to PAH deposition throughout the area. Benzo(a)pyrene (BaP) and dibenz(a,h)anthracene mean concentrations exceed health-based clean up levels. Risk assessment shows only a worst-case exposure scenario (BaP at the 95% upper confidence limit) increasing cancer risk (1.67 × 10⁻⁶) over current regulatory thresholds (1.0 × 10⁻⁶). Health quotients show potential health risks from fluoranthene and pyrene for daily park users and from BaP for all others. Mean soil PAH values are similar to New Orleans, but lower than Chicago, Boston, and London reflecting industrial history and site selection protocols. The soil PAH results presented here for sites selected for non-manipulated soils combined with an almost 100-year uninterrupted atmospheric exposure effectively show the maximum potential PAH values that can be found at any given undisturbed location within the Milwaukee urban core due solely to atmospheric deposition.
Show more [+] Less [-]Developmental assays using invasive cane toads, Rhinella marina, reveal safety concerns of a common formulation of the rice herbicide, butachlor
2021
Shuman-Goodier, Molly E. | Singleton, Grant R. | Forsman, Anna M. | Hines, Shyann | Christodoulides, Nicholas | Daniels, Kevin D. | Propper, Catherine R.
Identifying the adverse impacts of pesticide exposure is essential to guide regulations that are protective of wildlife and human health. Within rice ecosystems, amphibians are valuable indicators because pesticide applications coincide with sensitive reproductive and developmental life stages. We conducted two experiments using wild cane toads (Rhinella marina) to test 1) whether environmentally relevant exposure to a commercial formulation of butachlor, an acetanilide herbicide used extensively in rice, affects amphibian development and 2) whether cane toad tadpoles are capable of acclimatizing to sub-lethal exposure. First, we exposed wild cane toads to 0.002, 0.02, or 0.2 mg/L of butachlor (Machete EC), during distinct development stages (as eggs and hatchlings, as tadpoles, or continuously) for 12 days. Next, we exposed a subset of animals from the first experiment to a second, lethal concentration and examined survivorship. We found that cane toads exposed to butachlor developed slower and weighed less than controls, and that development of the thyroid gland was affected: exposed individuals had smaller thyroid glands and thyrocyte cells, and more individual follicles. Analyses of the transcriptome revealed that butachlor exposure resulted in downregulation of transcripts related to metabolic processes, anatomic structure development, immune system function, and response to stress. Last, we observed evidence of acclimatization, where animals exposed to butachlor early in life performed better than naïve animals during a second exposure. Our findings indicate that the commercial formulation of butachlor, Machete EC, causes thyroid endocrine disruption in vertebrates, and suggest that exposure in lowland irrigated rice fields presents a concern for wildlife and human health. Furthermore, we establish that developmental assays with cane toads can be used to screen for adverse effects of pesticides in rice fields.
Show more [+] Less [-]