Refine search
Results 371-380 of 8,074
Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice Full text
2021
Li, Milu | Zhou, Su | Wu, Yaling | Li, Yan | Yan, Wei | Guo, Qingchun | Xi, Yueyue | Chen, Yingying | Li, Yuanyuan | Wu, Meng | Zhang, Jinjin | Wei, Jia | Wang, Shixuan
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period—from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16–64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
Show more [+] Less [-]Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel Full text
2021
Tan Sian Hui Abdullah, Hannan Safiyyah | Aqlili Riana Mohd Asseri, Siti Nur | Khursyiah Wan Mohamad, Wan Nurul | Kan, Su-Yin | Azmi, Alyza Azzura | Yong Julius, Fu Siong | Chia, Poh Wai
This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO₃ solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 3:7 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.
Show more [+] Less [-]Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species Full text
2021
Shi, Wenguang | Zhou, Jing | Li, Jing | Ma, Chaofeng | Zhang, Yuhong | Deng, Shurong | Yu, Wenjian | Luo, Zhi-Bin
To explore whether lead (Pb)-induced defense responses are responsible for the low root-to-shoot Pb translocation, we exposed saplings of the two contrasting poplar species, Populus × canescens with relatively high root-to-shoot Pb translocation and P. nigra with low Pb translocation, to 0 or 8 mM PbCl₂. Pb translocation from the roots to aboveground tissues was lower by 57% in P. nigra than that in P. × canescens. Lower Pb concentrations in the roots and aerial tissues, greater root biomass, and lower ROS overproduction in the roots were found in P. nigra than those in P. × canescens treated with Pb. P. nigra roots had higher proportions of cell walls (CWs)-bound Pb and water insoluble Pb compounds, and higher transcript levels of some pivotal genes related to Pb vacuolar sequestration, such as phytochelatin synthetase 1.1 (PCS1.1), ATP-binding cassette transporter C1.1 (ABCC1.1) and ABCC3.1 than P. × canescens roots. Pb exposure induced defense responses including increases in the contents of pectin and hemicellulose, and elevated oxalic acid accumulation, and the transcriptional upregulation of PCS1.1, ABCC1.1 and ABCC3.1 in the roots of P. nigra and P. × canescens. These results suggest that the stronger defense barriers in P. nigra roots are probably associated with the lower Pb translocation from the roots to aerial tissues, and that Pb exposure-induced defense responses can enhance the barriers against Pb translocation in poplar roots.
Show more [+] Less [-]Associations of exposure to multiple trace elements with the risk of goiter: A case-control study Full text
2021
He, Jia-liu | Li, Guo-ao | Zhu, Zhen-yu | Hu, Ming-jun | Wu, Hua-bing | Zhu, Jin-liang | Zhao, Huan-huan | Zhang, Han-Shuang | Huang, Fen
Goiter is one of common endocrine diseases, and its etiology has not been fully elucidated. The changes in trace elements' levels have an important impact on the thyroid. We designed a case-control study, which involved 383 goiter cases and 383 matched controls. We measured these elements in the urine of participants by inductively coupled plasma optical emission spectrometry (ICP-OES), graphite furnace atomic absorption spectrometry (GFAAS) and As³⁺-Ce⁴⁺ catalytic spectrophotometry. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to select the elements into multi-element models, conditional logistic regression models were applied to analyze the association between elements and goiter risk. Bayesian kernel machine regression (BKMR) model was used to depict elements’ mixtures and evaluate their joint effects. Finally, 7 elements were included in the multi-element model. We found that the concentrations of lithium (Li), strontium (Sr) and barium (Ba) had a negative effect with goiter risk, and lead (Pb) and iodine (I) showed an extreme positive effect. Additionally, compared with the lowest levels, patients with highest quartiles of I and Pb were 6.49 and 1.94 times more likely to have goiter, respectively. On the contrary, in its second and third quartiles, arsenic (As) showed a negative effect (both OR<1). BKMR model showed a certain interaction among Pb, As, Sr and Li on goiter risk. Further large sample studies are needed to confirm these findings in the future.
Show more [+] Less [-]A national cross-sectional study of exposure to outdoor nitrogen dioxide and aeroallergen sensitization in Australian children aged 7–11 years Full text
2021
Tu, Yanhui | Williams, Gail M. | Cortés de Waterman, Adriana M. | Toelle, Brett G. | Guo, Yuming | Denison, Lyn | Babu, Giridhara R. | Yang, Bo-Yi | Dong, Guang-Hui | Jalaludin, Bin | Marks, Guy B. | Knibbs, Luke D.
The prevalence of allergic diseases in Australian children is high, but few studies have assessed the potential role of outdoor air pollution in allergic sensitization. We investigated the association between outdoor air pollution and the prevalence of aeroallergen sensitization in a national cross-sectional study of Australian children aged 7–11 years. Children were recruited from 55 participating schools in 12 Australian cities during 2007–2008. Parents completed a detailed (70-item) questionnaire. Outdoor nitrogen dioxide (NO₂), as a proxy for exposure to traffic-related emissions, was estimated using measurements from regulatory monitors near each school and a national land-use regression (LUR) model. Three averaging periods were assessed, using information on duration of residence at the address, including lifetime, previous (lifetime, excluding the last year), and recent (the last year only). The LUR model was used as an additional source of recent exposure estimates at school and home addresses. Skin prick tests (SPTs) were performed to measure sensitization to eight common aeroallergens. Multilevel logistic regression estimated the association between NO₂ and sensitization (by individual allergens, indoor and outdoor allergens, and all allergens combined), after adjustment for individual- and area-level covariates. In total, 2226 children had a completed questionnaire and SPT. The prevalence of sensitization to any allergen was 44.4%. Sensitization to house dust mites (HDMs) was the most common (36.1%), while sensitization to Aspergillus was the least common (3.4%). Measured mean (±s.d.) NO₂ exposure was between 9 (±2.9) ppb and 9.5 (±3.2) ppb, depending on the averaging period. An IQR (4 ppb) increase in measured previous NO₂ exposure was associated with greater odds of sensitization to HDMs (OR: 1.21, 95% CI: 1.01–1.43, P = 0.035). We found evidence of an association between relatively low outdoor NO₂ concentrations and sensitization to HDMs, but not other aeroallergens, in Australian children aged 7–11 years.
Show more [+] Less [-]Mitigation of global warming potential and greenhouse gas intensity in arable soil with green manure as source of nitrogen Full text
2021
Lee, Hyun Ho | Kim, Sung Un | Han, Hae Ri | Hur, Do Yeong | Owens, Vance N. | Kumar, Sandeep | Hong, Chang Oh
This study was conducted to determine the effect of different green manure treatments on net GWP and GHGI in upland soil. Barley (B), hairy vetch (HV), and a barley/hairy vetch mixture (BHV) were sown on an upland soil on November 4, 2017 and October 24, 2018. The aboveground biomass of these green manures was incorporated into soil on June 1, 2018 and May 8, 2019. In addition, a fallow treatment (F) was installed as the control. Maize was transplanted as the subsequent crop after incorporation of green manures. Green manuring significantly affected CO₂ and N₂O emission, but not CH₄. Average cumulative soil respiration across years with HV and BHV were 37.0 Mg CO₂ ha⁻¹ yr⁻¹ and 35.8 Mg CO₂ ha⁻¹ yr⁻¹, respectively and significantly higher than those with under F and B (32.7 Mg CO₂ ha⁻¹ yr⁻¹ and 33.0 Mg CO₂ ha⁻¹ yr⁻¹, respectively). Cumulative N₂O emissions across years with F and HV were 6.29 kg N₂O ha⁻¹ yr⁻¹ and 5.44 kg N₂O ha⁻¹ yr⁻¹, respectively and significantly higher than those with B and BHV (4.26 kg N₂O ha⁻¹ yr⁻¹ and 4.42 kg N₂O ha⁻¹ yr⁻¹, respectively). The net ecosystem carbon budget for HV (−0.5 Mg C ha⁻¹ yr⁻¹) was the greatest among the treatments (F; −1.61 Mg C ha⁻¹ yr⁻¹, B; −3.98 Mg C ha⁻¹ yr⁻¹, and BHV; −0.91 Mg C ha⁻¹ yr⁻¹) because of its high biomass yields and the yield of maize after incorporation of HV. There was no significant difference of GHGI among F, HV, and BHV. Incorporation of HV or BHV could reduce net CO₂ emissions per unit of maize grain production as well as F.
Show more [+] Less [-]Phosphate hinders the complexation of dissolved organic matter with copper in lake waters Full text
2021
Ding, Xiang | Xu, Weihua | Li, Zhongwu | Huang, Mei | Wen, Jiajun | Jin, Changsheng | Zhou, Mi
The properties of phosphate in lakes and their ability to cause eutrophication have been well studied; however, the effects of phosphate on the environmental behavior of other substances in lakes have been ignored. Dissolved organic matter (DOM) and heavy metals may coexist with phosphate in lakes. Herein, the mechanisms underlying the influence of phosphate on heavy metals complexation with DOM were investigated using multi-spectroscopic tools. Overall, the amount of DOM-bound Cu(Ⅱ) decreased with the increasing phosphate content. Furthermore, the fluorescence excitation and emission matrix results combined with parallel factor analysis showed that when the Cu(Ⅱ) concentration increased from 0 to 5 mg/L and 50 μM phosphate to the reaction of DOM and copper, the fluorescence intensity of tyrosine (component 1), humic-like (component 2) and tryptophan (component 3) decreased by 36.46%, 57.34%, and 74.70% compared with the treatment with no phosphate addition, respectively. This finding indicates that the binding of different fluorescent components to Cu(Ⅱ) was restricted by phosphate. Furthermore, different functional groups responded differently to Cu(Ⅱ) under different phosphate concentrations. The binding sequence of different functional groups under high concentration of phosphate (phenolic hydroxyl group>amide (Ⅰ) >carbohydrates) was completely opposite to that with no phosphate. These results demonstrated that phosphate could restrict the binding affinity of heavy metals with different fluorescent substances or organic ligands of DOM, suggesting that the comigration of DOM-bound heavy metals in lakes is hindered by phosphate and the risk of heavy metal poisoning in aquatic organisms is therefore diminished.
Show more [+] Less [-]A generalized machine learning approach for dissolved oxygen estimation at multiple spatiotemporal scales using remote sensing Full text
2021
Guo, Hongwei | Huang, Jinhui Jeanne | Zhu, Xiaotong | Wang, Bo | Tian, Shang | Xu, Wang | Mai, Youquan
Dissolved oxygen (DO) is an effective indicator for water pollution. However, since DO is a non-optically active parameter and has little impact on the spectrum captured by satellite sensors, research on estimating DO by remote sensing at multiple spatiotemporal scales is limited. In this study, the support vector regression (SVR) models were developed and validated using the remote sensing reflectance derived from both Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data and synchronous DO measurements (N = 188) and water temperature of Lake Huron and three other inland waterbodies (N = 282) covering latitude between 22–45 °N. Using the developed models, spatial distributions of the annual and monthly DO variability since 1984 and the annual monthly DO variability since 2000 in Lake Huron were reconstructed for the first time. The impacts of five climate factors on long-term DO trends were analyzed. Results showed that the developed SVR-based models had good robustness and generalization (average R² = 0.91, root mean square percentage error = 2.65%, mean absolute percentage error = 4.21%), and performed better than random forest and multiple linear regression. The monthly DO estimates by Landsat and MODIS data were highly consistent (average R² = 0.88). From 1984 to 2019, the oxygen loss in Lake Huron was 6.56%. Air temperature, incident shortwave radiation flux density, and precipitation were the main climate factors affecting annual DO of Lake Huron. This study demonstrated that using SVR-based models, Landsat and MODIS data could be used for long-term DO retrieval at multiple spatial and temporal scales. As data-driven models, combining spectrum and water temperature as well as extending the training set to cover more DO conditions could effectively improve model robustness and generalization.
Show more [+] Less [-]A review on pesticides in flower production: A push to reduce human exposure and environmental contamination Full text
2021
Pereira, Patrícia C.G. | Parente, Cláudio E.T. | Carvalho, Gabriel O. | Torres, João P.M. | Meire, Rodrigo O. | Dorneles, Paulo R. | Malm, Olaf
In several countries, flower import regulations are restricted to food security, by establishing maximum residue limits (MRL) for pesticides in flower-based food products and biosafety, in order to limit the circulation of vectors, pests and exotic species across borders. In this context, the lack of limits on pesticides in flower-products for ornamental purposes can influence the pesticide overuse in production areas, as well as the transfer of contaminated products between countries. Therefore, the purpose of this review was to discuss possible adverse effects on human and environmental health of pesticides used in floriculture, evaluating regulations on the use of these pesticides in the main importing and flower-producing countries. This review included 92 documents. The use of 201 compounds was identified by interviews and analytical measurements. Among them, 93 are banned by the European Union (EU), although 46.3 % of these compounds have been identified in samples from European countries. Latin American countries have a large number of scientific publications on pesticides in flower production (n = 51), while the EU and China have less studies (n = 24) and the United States and Japan have no studies. Regarding adverse health effects, poorer neurobehavioral development, reproductive disorders, congenital malformations and genotoxicity have been reported for residents of flower production areas and workers throughout the flower production cycle. Studies including water samples show overuse of pesticides, while environmental impacts are related to water and air contamination, soil degradation and adverse effects on the reproduction and development of non-target organisms. This review points out that the absence of MRL for non-edible flowers can be crucial for the trade of contaminated products across borders, including pesticides banned in importing countries. Furthermore, setting limits on flowers could reduce the use of pesticides in producing countries.
Show more [+] Less [-]Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil Full text
2021
Song, Yan | Lei, Cheng | Yang, Kun | Lin, Daohui
The high toxicity and persistence of polychlorinated biphenyls (PCBs) in the environment demands the development of effective remediation for PCBs-contaminated soils. In this study, electrokinetic (EK) remediation integrated with iron-carbon material (Fe/C) was established and used to remediate PCB28 (1 mg kg⁻¹) contaminated soil under a voltage gradient of 1 V cm⁻¹. Effects of Fe/C dosage, soil type, and remediation time were investigated. The operational condition was optimized as 4 g kg⁻¹ Fe/C, yellow soil, and 14 d-remediation, achieving PCB28 removal efficiency of 58.6 ± 8.8% and energy utilization efficiency of 146.5. Introduction of EK-Fe/C did not significantly affect soil properties except for slight soil moisture content increase and total Fe content loss. Soil electrical conductivity exhibited an increasing trend from anode to cathode attributed to EK-induced electromigration and electroosmosis. EK accelerated the corrosion and consumption of reactive Fe⁰/Fe₃C in Fe/C by generating acid condition. Fe/C in turn effectively prevented EK-induced soil acidification and maintained soil neutral to weak alkaline condition. A synergistic effect between EK and Fe/C was revealed by the order of PCB28 removal efficiency-EK-Fe/C (58.6 ± 8.8%) > EK (37.7 ± 1.6%) > Fe/C (6.8 ± 5.0%). This could be primarily attributed to EK and Fe/C enhanced Fenton reaction, where EK promoted Fe/C dissolution and H₂O₂ generation. In addition to oxidation by Fenton reaction generated ·OH, EK-mediated electrochemical oxidation, Fe/C-induced reduction and migration of Fe/C adsorbed PCBs were all significant contributors to PCB28 removal in the EK-Fe/C system. These findings suggest that the combination of EK and Fe/C is a promising technology for remediation of organics-contaminated soil.
Show more [+] Less [-]