Refine search
Results 371-380 of 7,240
Occurrence, spatial distribution, and partitioning behavior of marine lipophilic phycotoxins in the Pearl River Estuary, South China
2022
Li, Jing | Ruan, Yuefei | Wu, Rongben | Cui, Yongsheng | Shen, Jincan | Mak, Yim Ling | Wang, Qi | Zhang, Kai | Yan, Meng | Wu, Jiaxue | Lam, Paul K.S.
The occurrence, spatial distribution, and partitioning behavior of 17 marine lipophilic phycotoxins (MLPs) in surface and bottom seawater, particulate organic matter (POM), and surface sediment from the Pearl River Estuary (PRE) were investigated to understand current contamination and the potential risks to marine ecosystems in this region. Nine MLPs were detected, including azaspiracid1−3, gymnodimine, okadaic acid, dinophysistoxin 1−2, pectenotoxin2 (PTX2), and homoyessotoxin, with Σ₁₇MLP concentrations ranging 545–12,600 pg L⁻¹ and 619−8,800 pg L⁻¹ in surface and bottom seawater, respectively; 0–294 ng g⁻¹ and 0.307–300 ng g⁻¹ dry weight (dw) in surface and bottom POM, respectively; and 3.90–982 pg g⁻¹ dw in surface sediment. Lower Σ₁₇MLP levels in the seawater were found at the mouth of the PRE, and gradually increased with increasing distance offshore. According to the calculated partition coefficient, the affinity of MLPs for the aquatic environment components was as follows (from highest to lowest): POM > seawater > sediment. Overall, the distribution and migration of MLPs in the PRE may depend on partition coefficients, the organic carbon fraction, and environmental factors.
Show more [+] Less [-]Burden of disease induced by public overexposure to solar ultraviolet radiation (SUVR) at the national and subnational levels in Iran, 2005–2019
2022
Abtahi, Mehrnoosh | Dobaradaran, Sina | Koolivand, Ali | Jorfi, Sahand | Saeedi, Reza
Estimating the burden of diseases induced by overexposure to solar ultraviolet radiation (SUVR) can help to prioritize environmental health interventions. The age-sex specific and cause-specific mortality and disability-adjusted life years (DALYs) attributable to overexposure to SUVR at the national and subnational levels in Iran, 2005–2019 were estimated. The burden of disease induced by overexposure to SUVR was quantified in four steps as follows: (1) estimating exposure to SUVR, (2) estimating total incidences and deaths of target causes, (3) assessing population attributable fractions of the target causes for the SUVR, and (4) calculating the attributable burden of disease. The attributable DALYs, deaths, age-standardized DALY rate, and age-standardized death rate at the national level were determined to be respectively 21896, 252, 42.59, and 0.56 in 2005 and were respectively changed to 28665, 377, 38.76, and 0.53 in 2019. The contributions of causes in the attributable DALYs at the national level were different by year and sex and for both sexes in 2019 were as follows: 46.15% for cataract, 20.36% for malignant skin melanoma, 16.07% for sunburn, 12.41% for squamous-cell carcinoma, and 5.01% for the other five causes. The contributions of population growth, population ageing, risk exposure, and risk-deleted DALY rate in the temporal variations of the attributable burden of disease in the country were +20.73%, +20.68%, +2.01%, and −12.51%. The highest and lowest provincial attributable age-standardized DALY rates in 2019 were observed in Fars (46.8) and Ardebil (32.7), respectively. The burden of disease induced by exposure to SUVR caused relatively low geographical inequality in health status in Iran. Due to increasing trends of the SUVR as well as the attributable burden of disease, the preventive interventions against the SUVR overexposure should be considered in the public health action plan all across the country.
Show more [+] Less [-]Atmospheric nitrate formation pathways in urban and rural atmosphere of Northeast China: Implications for complicated anthropogenic effects
2022
Li, Zhengjie | Walters, Wendell W. | Hastings, Meredith G. | Song, Linlin | Huang, Shaonan | Zhu, Feifei | Liu, Dongwei | Shi, Guitao | Li, Yilan | Fang, Yunting
Effects of human activities on atmospheric nitrate (NO₃⁻) formation remain unclear, though the knowledge is critical for improving atmospheric chemistry models and nitrogen deposition reduction strategies. A potentially useful way to explore this is to compare NO₃⁻ oxidation processes in urban and rural atmospheres based upon the oxygen stable isotope composition of NO₃⁻ (Δ¹⁷O–NO₃⁻). Here we compared the Δ¹⁷O–NO₃⁻ from three-years of daily-based bulk deposition in urban (Shenyang) and forested rural sites (Qingyuan) in northeast China and quantified the relative contributions of different formation pathways based on the SIAR model. Our results showed that the Δ¹⁷O in Qiangyuan (26.2 ± 3.3‰) is significantly higher (p < 0.001) than in Shenyang (24.0 ± 4.0‰), and significantly higher in winter (Shenyang: 26.1 ± 6.7‰, Qingyuan: 29.6 ± 2.5‰) than in summer (Shenyang: 22.7 ± 2.9‰, Qingyuan: 23.8 ± 2.4‰) in both sites. The lower values in the urban site are linked with conditions that favored a higher relative contribution of nitrogen dioxide reaction with OH pathway (0.76-0.91) than in rural site (0.47-0.62), which should be induced by different levels of human activities in the two sites. The seasonal variations of Δ¹⁷O–NO₃⁻ in both sites are explained by a higher relative contribution of ozone-mediated oxidation chemistry and unfavorable conditions for the OH pathway during winter relative to summer, which is affected by human activities and seasonal meteorological condition change. Based on Δ¹⁷O, wintertime conditions led to a contribution of O₃ related pathways (NO₃ + DMS/HC and N₂O₅ hydrolysis) of 0.63 in Qingyuan and 0.42 in Shenyang, while summertime conditions led to 0.15 in Qingyuan and 0.05 in Shenyang. Our comparative study on Δ¹⁷O–NO₃⁻ between urban and rural sites reveals different anthropogenic effects on nitrate formation processes on spatial and temporal scales, illustrating different responses of reactive nitrogen chemistry to changes in human activities.
Show more [+] Less [-]Investigating detection probability of mobile survey solutions for natural gas pipeline leaks under different atmospheric conditions
2022
Tian, Shanru | Riddick, Stuart N. | Cho, Younki | Bell, Clay S. | Zimmerle, Daniel J. | Smits, Kathleen M.
The 2015 Paris agreement aims to cut greenhouse gas emissions and keep global temperature rise below 2 °C above pre-industrial levels. Reducing CH₄ emissions from leaking pipelines presents a relatively achievable objective. While walking and driving surveys are commonly used to detect leaks, the detection probability (DP) is poorly characterized. This study aims to investigate how leak rates, survey distance and speed, and atmospheric conditions affect the DP in controlled belowground conditions with release rates of 0.5–8.5 g min⁻¹. Results show that DP is highly influenced by survey speed, atmospheric stability, and wind speed. The average DP in Pasquill–Gifford stability (PG) class A is 85% at a low survey speed (2–11 mph) and decreases to 68%, 63%, 65%, and 60% in PGSC B/C, D, E/F, and G respectively. It is generally less than 25% at a high survey speed (22–34 mph), regardless of stability conditions and leak rates. Using the measurement data, a validated DP model was further constructed and showed good performance (R2: 0.76). The options of modeled favorable weather conditions (i.e., PG stability class and wind speed) to have a high DP (e.g., >50%) are rapidly decreased with the increase in survey speed. Walking survey is applicable over a wider range of weather conditions, including PG stability class A to E/F and calm to medium winds (0–5 m s⁻¹). A driving survey at a low speed (11 mph) can only be conducted under calm to low wind speed conditions (0–3 m s⁻¹) to have an equivalent DP to a walking survey. Only calm wind conditions in PG A (0–1 m s⁻¹) are appropriate for a high driving speed (34 mph). These findings showed that driving survey providers need to optimize the survey schemes to achieve a DP equivalence to the traditional walking survey.
Show more [+] Less [-]Greenspace and health outcomes in children and adolescents: A systematic review
2022
Ye, Tingting | Yu, Pei | Wen, Bo | Yang, Zhengyu | Huang, Wenzhong | Guo, Yuming | Abramson, Michael J. | Li, Shanshan
An increasing body of evidence has linked greenspace and various health outcomes in children and adolescents, but the conclusions were inconsistent. For this review, we comprehensively summarized the measurement methods of greenspace, resultant health outcomes, and potential mechanisms from epidemiological studies in children and adolescents (aged ≤19 years). We searched for studies published and indexed in MEDLINE and EMBASE (via Ovid) up to April 11, 2022. There were a total of 9,291 studies identified with 140 articles from 28 countries finally assessed and included in this systematic review. Over 70% of the studies were conducted in highly urbanised countries/regions, but very limited research has been done in low-and middle-income countries and none in Africa. Measures of greenspace varied. Various health outcomes were reported, including protective effects of greenspace exposure on aspects of obesity/overweight, myopia, lung health, circulatory health, cognitive function, and general health in children and adolescents. The associations between greenspace exposure and other health outcomes were inconsistent, especially for respiratory health studies. We pooled odds ratios (OR) using random-effects meta-analysis for health outcomes of asthma (OR = 0.94, 95%CI: 0.84 to 1.06), allergic rhinitis (OR = 0.95; 95% CI: 0.73 to 1.25), and obesity/overweight (OR = 0.91, 95%CI: 0.84 to 0.98) with per 0.1 unit increase in normalized difference in vegetation index (NDVI). These associations have important implications for the assessment and management of urban environment and health in children and adolescents.
Show more [+] Less [-]Health risks of phthalates: A review of immunotoxicity
2022
Zhang, Ying | Lyu, Liang | Tao, Yue | Ju, Hanxun | Chen, Jie
Phthalates (PAEs) are known environmental endocrine disruptors that have been widely detected in several environments, and many studies have reported the immunotoxic effects of these compounds. Here, we reviewed relevant published studies, summarized the occurrence and major metabolic pathways of six typical PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) in water, soil, and the atmosphere, degradation and metabolic pathways under aerobic and anaerobic conditions, and explored the molecular mechanisms of the toxic effects of eleven PAEs (DEHP, DPP, DPrP, DHP, DEP, DBP, MBP, MBzP, BBP, DiNP, and DMP) on the immune system of different organisms at the gene, protein, and cellular levels. A comprehensive understanding of the mechanisms by which PAEs affect immune system function through regulation of immune gene expression and enzymes, increased ROS, immune signaling pathways, specific and non-specific immunosuppression, and interference with the complement system. By summarizing the effects of these compounds on typical model organisms, this review provides insights into the mechanisms by which PAEs affect the immune system, thus supplementing human immune experiments. Finally, we discuss the future direction of PAEs immunotoxicity research, thus providing a framework for the analysis of other environmental pollutants, as well as a basis for PAEs management and safe use.
Show more [+] Less [-]Sublethal effects of metal toxicity and the measure of plant fitness in ecotoxicological experiments
2022
Nowak, Juljan Ignacy | Faure, Nathalie | Glorieux, Cédric | Vile, Denis | Pauwels, Maxime | Frérot, Hélène
Anthropogenic pollution is a major driver of global environmental change. To be properly addressed, the study of the impact of pollutants must consider both lethal effects and sublethal effects on individual fitness. However, measuring fitness remains challenging. In plants, the total number of seeds produced, i.e. the seed set, is traditionally considered, but is not readily accessible. Instead, performance traits related to survival, e.g., vegetative biomass and reproductive success, can be measured, but their correlation with seed set has rarely been investigated. To develop accurate estimates of seed set, relationships among 15 vegetative and reproductive traits were analyzed. For this purpose, Noccaea caerulescens (Brassicaceae), a model plant to study local adaptation to metal-contaminated environments, was used. To investigate putative variation in trait relationships, sampling included several accessions cultivated in contrasting experimental conditions. To test their applicability, selected estimates were used in the first generation of a Laboratory Natural Selection (LNS) experiment exposing experimentally plants to zinc soil pollution. Principal component analyses revealed statistical independence between vegetative and reproductive traits. Traits showing the strongest positive correlation with seed set were the number of non-aborted silicles, and the product of this number and mean silicle length. They thus appeared the most appropriate to document sublethal or fitness effects of environmental contaminants in plant ecotoxicological studies. The relevance of both estimates was confirmed by using them to assess the fitness of parental plants of the first generation of an LNS experiment: the same families consistently displayed the highest or the lowest performance values in two independent experimental metal-exposed populations. Thus, both these fitness estimates could be used to determine the expected number of offspring and the composition of successive generations in further LNS experiments investigating the impact of multi-generational exposure of a plant species to environmental pollution.
Show more [+] Less [-]Effects of sediment physicochemical factors and heavy metals on the diversity, structure, and functions of bacterial and fungal communities from a eutrophic river
2022
Lin, Wanjing | Zhao, Jiaqi | Miao, Lingzhan | Hou, Jun
Urbanization has destroyed river ecosystems, leading to eutrophication. Heavy metals are frequently observed in urban rivers, and the joint effects of eutrophication and heavy metals on microbial communities, especially on fungal communities, have not been adequately explored. In this study, we explored the effect of sediment physicochemical factors and heavy metals on the microbial diversity, community structure, and functions of bacterial and fungal communities from a black-odorous river in Wuhu, China. Twenty-four samples were collected, and the diversity and structure of fungal and bacterial communities were determined by high-throughput sequencing. Proteobacteria and Rozellomycota were the main phyla in the bacterial and fungal communities, respectively. The results showed different distribution patterns of bacterial and fungal communities along the river. Physicochemical factors and heavy metals exhibited different effects on microbial variation. Specifically, pH and Cr negatively affected bacterial α-diversity, whereas total phosphorus and Cr significantly affected fungal α-diversity. Variance partitioning analysis revealed that physicochemical factors explained more of the bacterial community structure than heavy metals (49.5% vs. 36.6%), with pH and total phosphorus being the dominant factors. Opposite patterns were observed for fungal community structure, with heavy metals contributing the most (48.0%). A similar influence pattern was observed for the predicted functions of the two communities. This study suggests that heavy metals in eutrophication rivers are essential factors that shift the microbial variation and should be considered in urban river evaluation and remediation.
Show more [+] Less [-]The association of co-exposure to polycyclic aromatic hydrocarbon and phthalates with blood cell-based inflammatory biomarkers in children: A panel study
2022
Zhao, Lei | Liu, Miao | Liu, Linlin | Guo, Wenting | Yang, Huihua | Chen, Shuang | Yu, Jie | Li, Meng | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhang, Xiaomin
The association of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) with blood cell-based inflammatory biomarkers is largely unknown. We conducted a panel study of 144 children aged 4–12 years, with up to 3 repeated visits across 3 seasons. For each visit, we collected the first-morning urine for 4 consecutive days and fasting blood on the day of physical examination. We developed a gas chromatography/tandem mass spectrometry method to detect the metabolites of 10 PAHs (OH-PAHs) and 10 PAEs (mPAEs) in urine samples. We employed linear mixed-effects models to evaluate the individual associations of each OH-PAH and mPAE with blood cell-based inflammatory biomarkers over different lag times. Bayesian kernel machine regression (BKMR) and quantile g-computation were used to evaluate the overall associations of OH-PAHs and mPAEs mixtures with blood cell-based inflammatory biomarkers. After multiple adjustments, we found positive associations of summed hydroxylphenanthrene (∑OHPHE), summed OH-PAHs, and mono-n-butyl phthalate with inflammatory biomarkers such as neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index (SII) at lag 0 (the day of physical examination). Each 1% increase in ∑OHPHE was related to a 0.18% (95% confidence interval: 0.10%, 0.25%) increase in SII, which was the strongest among the above associations. The results of BKMR and quantile g-computation suggested that co-exposure to PAHs and PAEs mixture was associated with an elevated white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII, to which ∑OHPHE and 1-hydroxypyrene (1-OHPYR) might be the major contributors. In addition, gender and age modified the associations of ∑OHPHE and 1-OHPYR with inflammatory biomarkers, where girls and younger children were more susceptible. In conclusion, co-exposure to PAHs and PAEs was associated with elevated inflammation in children, in which ∑OHPHE and 1-OHPYR might play important roles.
Show more [+] Less [-]The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Show more [+] Less [-]