Refine search
Results 3761-3770 of 4,309
Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend Full text
2017
Rashedul, Hasan Khondakar | Kalam, Md Abdul | Masjuki, Haji Hassan | Teoh, Yew Heng | How, Heoy Geok | Monirul, Islam Mohammad | Imdadul, Hassan Kazi
The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons in the leaves of twelve plant species along an urbanization gradient in Shanghai, China Full text
2017
Liang, Jing | Fang, Hailan | Zhang, Taolin | Wang, Xingxiang
Plants, particularly their leaves, play an important role in filtering both gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs). However, many studies have focused on the accumulation and adsorption functions of plant leaves, possibly underestimating the effects that plants have on air quality. Therefore, eight tree species from different locations in Shanghai were selected to assess PAH filtering (via adsorption and capture) using washed and unwashed plant leaves. The differences in the total PAH contents in the washed leaves were constant for the different species across the different sampling sites. The PAH levels decreased in the following order: industrial areas > traffic areas > urban areas > background area. The PAH compositions in the different plant leaves were dominated by fluorene (Fle), phenanthrene (Phe), anthracene (Ant), chrysene (Chr), fluoranthene (Flu), and pyrene (Pyr); notably, Phe accounted for 49.4–76.7% of the total PAHs. By comparing the PAH contents in the washed leaves with the PAH contents in the unwashed leaves, Pittosporum tobira (P. tobira), Ginkgo biloba (G. biloba), and Platanus acerifolia (P. acerifolia) were found to be efficient species for adsorbing PAHs, while Osmanthus fragrans (O. fragrans), Magnolia grandiflora (M. grandiflora), and Prunus cerasifera Ehrh. (P. cerasifera Ehrh.) were efficient species for capturing PAHs. The efficiencies of the plant leaves for the removal of PAHs from air occurred in the order of low molecular weight > medium molecular weight > high molecular weight PAHs.
Show more [+] Less [-]Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes Full text
2017
Jia, Yuyu | Wang, Lin | Qu, Zhipeng | Wang, Chaoyi | Yang, Zhaoguang
Three fish species (Carassius auratus, Pelteobagrus fulvidraco, and Squaliobarbus curriculus) were collected from Xiang River near Changsha City, Southern China. The concentrations of heavy metals including arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn) in the muscle, gill, and liver of three species were determined by the inductively coupled plasma mass spectrometry method. One-way analysis of variance (ANOVA) was introduced to determine the significant variations (p < 0.05) of heavy metals. Livers were found to accumulate Cd and Cu due to the metallothionein proteins. High levels of Mn and Pb in the gills indicated that the main uptake pathway of these heavy metals was from the water. The carnivorous species, P. fulvidraco, was found to accumulate the highest levels of toxic elements (As, Cd, and Pb), while relatively high concentrations of nutrient elements (Cu, Fe, Mn, and Zn) were accumulated in omnivorous species (C. auratus and S. curriculus). According to the results of Pearson’s correlation analysis, there were few significant relationships at p < 0.01 level between the concentrations of the analyzed elements and the fish sizes. The results of risk assessment indicated that exposure to the toxic heavy metals from fish muscle consumption posed no non-carcinogenic health risk to local inhabitants.
Show more [+] Less [-]Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b) Full text
2017
Marchlewicz, Ariel | Guzik, Urszula | Hupert-Kocurek, Katarzyna | Nowak, Agnieszka | Wilczyńska, Sylwia | Wojcieszyńska, Danuta
In recent years, the increased intake of ibuprofen has resulted in the presence of the drug in the environment. This work presents results of a study on degradation of ibuprofen at 25 mg L⁻¹ in the presence of glucose, as an additional carbon source by Bacillus thuringiensis B1(2015b). In the cometabolic system, the maximum specific growth rate of the bacterial strain was 0.07 ± 0.01 mg mL⁻¹ h⁻¹ and K ₛμ 0.27 ± 0.15 mg L⁻¹. The maximum specific ibuprofen removal rate and the value of the half-saturation constant were q ₘₐₓ = 0.24 ± 0.02 mg mL⁻¹ h⁻¹ and K ₛ = 2.12 ± 0.56 mg L⁻¹, respectively. It has been suggested that monooxygenase and catechol 1,2-dioxygenase are involved in ibuprofen degradation by B. thuringiensis B1(2015b). Toxicity studies showed that B. thuringiensis B1(2015b) is more resistant to ibuprofen than other tested organisms. The EC50 of ibuprofen on the B1 strain is 809.3 mg L⁻¹, and it is 1.5 times higher than the value of the microbial toxic concentration (MTCₐᵥg). The obtained results indicate that B. thuringiensis B1(2015b) could be a useful tool in biodegradation/bioremediation processes.
Show more [+] Less [-]Lactational exposure to abamectin induced mortality and adverse biochemical and histopathological effects in suckling pups Full text
2017
Mossa, Abdel-Tawab H. | Abdel Rasoul, Mona A. | Mohafrash, Samia M. M.
Information about the adverse effects of lactation transfer of abamectin (ABA) is important for human health, especially in the third-world countries where breastfeeding is the only source of nutrition for infants. So, the present study was undertaken to evaluate the adverse effects of breastfeeding exposure to ABA on oxidative damage and liver and kidney dysfunction in suckling rats. Dams were orally administered ABA at a doses 22.10, 11.05, and 2.21 mg a.i./kg b.wt from postnatal day 1 (PND1) until day 20 (PND20). The signs of toxicity and high mortality were recorded in suckling male (67.5%) and female (55.0%) pups whose mother exposed to the ABA at dose 22.1 mg a.i./kg b.wt. ABA induced significantly decrease in body weights of mothers and their male and female pups and significant increase in relative liver weights. It caused oxidative stress in the liver and kidney of mothers and their pups by increasing the level of malondialdehyde (MDA) and decreased activities of superoxide dismutase (SOD) and glutathione-transferase (GST). ABA altered the level of serum liver and kidney dysfunction biomarkers either in the mothers or their male and female pups in a dose-dependent manner. It caused histopathological alterations in the liver and kidney tissues. It can be decided that ABA was accumulated in mother’s milk, transferred through breast feeding, and induced mortality in their suckling pups. It caused oxidative stress, lipid peroxidation, and biochemical and histopathological alterations in the liver and kidney of mothers and their suckling pups. The results in the present study add some information about the adverse effect of lactation transfer of ABA, which is important for human health in the third-world countries where breastfeeding may be the only source of nutrition for infants in the first and most critical weeks of life.
Show more [+] Less [-]Influence of alternating current on the adsorption of indigo carmine Full text
2017
Kesraoui, Aida | Selmi, Taher | Seffen, Monig | Brouers, François
The main purpose of this work is to study the effect of a new process of accelerating which consist to couple the electrochemical process with the adsorption to remove an anionic dye, the indigo carmine. That is why, we investigated the effects of the new process of accelerating the adsorption process by using alternating current (AC) on the retention of an anionic dye, the indigo carmine. The adsorption capacity of dye (mg/g) was raised with the raise of current voltage in solution, temperature, and initial indigo carmine concentration and decreased with the increase of initial solution pH, current density, and mass of carbon. The results demonstrate that the removal efficiency of 97.0 % with the current voltage of 15 V is achieved at a current density of 0.014 A/cm², of pH 2 using zinc as electrodes and contact time of 210 min for adsorption in the presence of AC. Concerning the adsorption without AC, the results obtained showed that for an initial concentration equal to 20 mg/L, more than 95 % amount of adsorbed dye was retained after 405 min of contact in batch system. The comparison between adsorption in the presence and absence of an alternating current shows the importance of the alternating current in the acceleration of the adsorption method and improve the performances of FILTRASORB 200. For both cases, the adsorption mechanism follows the fractal kinetics BSf(n,α) model and the Brouers–Sotolongo isotherm model provides a good fit of the experimental data for both adsorption with and without alternating current.
Show more [+] Less [-]Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China Full text
2017
Wang, Tianjiao | Chen, Tong | Lin, Xiaoqing | Zhan, Mingxiu | Li, Xiaodong
The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011–0.109 ng international toxic equivalent factor (I-TEQ)/Nm³ and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm³) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm³). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3–43.6 and 32.5–75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05–3.2 μg/Nm³) was also much lower than that formed from the CFB incinerator (10.9–75.2 μg/Nm³). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100–1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6–141.0 μg/Nm³) and PAHs (148.6–4986.5 μg/Nm³) were detected in the stack gases of MSWI B. In some cases, the concentrations were as high as the concentrations in the fumes exiting the boiler of one foreign stoker without flue gas purification indicating the abundance of CPh and PAH emissions in the stack gas of waste incinerators.
Show more [+] Less [-]Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA) Full text
2017
Culicov, Otilia A. | Yurukova, Liliana | Duliu, Octavian G. | Zinicovscaia, Inga
The total content of 8 major and 32 trace elements in four species of mosses and two of lichens as well as neighboring soil and rocks collected from different places of the Livingston Island Antarctica was determined by instrumental neutron activation analysis. The main goals of the project consisted of evidencing the possible trace of anthropogenic contamination as well as the influence of altitude on the distribution of considered elements. In the absence of a unanimously accepted descriptor, enrichment factor, geo-accumulation, and pollution load indices with respect to soil and rocks were used. The data, interpreted within the model of a reference plant, were compared with previous studies regarding the same organisms in similar geographic and climatological areas. The experimental results evidenced different capacity of mosses and lichens to retain the considered elements, but within experimental uncertainties, no traces of anthropogenic pollution were found. At the same time, it was found that the content of most of the elements decreased with the altitude.
Show more [+] Less [-]A review of AirQ Models and their applications for forecasting the air pollution health outcomes Full text
2017
Oliveri Conti, Gea | Heibati, Behzad | Kloog, Itai | Fiore, Maria | Ferrante, Margherita
Even though clean air is considered as a basic requirement for the maintenance of human health, air pollution continues to pose a significant health threat in developed and developing countries alike. Monitoring and modeling of classic and emerging pollutants is vital to our knowledge of health outcomes in exposed subjects and to our ability to predict them. The ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accurate representation of the chemical state of the atmosphere. The task of providing the best possible analysis of air pollution thus requires efficient computational tools enabling efficient integration of observational data into models. A number of air quality models have been developed and play an important role in air quality management. Even though a large number of air quality models have been discussed or applied, their heterogeneity makes it difficult to select one approach above the others. This paper provides a brief review on air quality models with respect to several aspects such as prediction of health effects.
Show more [+] Less [-]Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums Full text
2017
Velázquez, Yolanda Flores | Nacheva, Petia Mijaylova
The biodegradation of fluoxetine, mefenamic acid, and metoprolol using ammonium-nitrite-oxidizing consortium, nitrite-oxidizing consortium, and heterotrophic biomass was evaluated in batch tests applying different retention times. The ammonium-nitrite-oxidizing consortium presented the highest biodegradation percentages for mefenamic acid and metoprolol, of 85 and 64% respectively. This consortium was also capable to biodegrade 79% of fluoxetine. The heterotrophic consortium showed the highest ability to biodegrade fluoxetine reaching 85%, and it also had a high potential for biodegrading mefenamic acid and metoprolol, of 66 and 58% respectively. The nitrite-oxidizing consortium presented the lowest biodegradation of the three pharmaceuticals, of less than 48%. The determination of the selected pharmaceuticals in the dissolved phase and in the biomass indicated that biodegradation was the major removal mechanism of the three compounds. Based on the obtained results, the biodegradation kinetics was adjusted to pseudo-first-order for the three pharmaceuticals. The values of k bᵢₒₗ for fluoxetine, mefenamic acid, and metoprolol determined with the three consortiums indicated that ammonium-nitrite-oxidizing and heterotrophic biomass allow a partial biodegradation of the compounds, while no substantial biodegradation can be expected using nitrite-oxidizing consortium. Metoprolol was the less biodegradable compound. The sorption of fluoxetine and mefenamic acid onto biomass had a significant contribution for their removal (6–14%). The lowest sorption coefficients were obtained for metoprolol indicating that the sorption onto biomass is poor (3–4%), and the contribution of this process to the global removal can be neglected.
Show more [+] Less [-]