Refine search
Results 3781-3790 of 4,937
Estimation of Kd(PAR) in inland waters across China in relation to the light absorption of optically active components Full text
2019
Wen, Zhidan | Song, Kaishan | Fang, Chong | Yang, Qian | Liu, Ge | Shang, Yingxin | Wang, Xiaodi
The comprehensive analysis of the relationships between the attenuation of photosynthetic active radiation (Kd(PAR)) and light absorption is an imperative requirement to retrieve Kd(PAR) from remote sensing data for aquatic environments. The spatial distributions of the Kd(PAR) and light absorption of optically active components (aOACₛ) were routinely estimated in China lakes and reservoirs. Spatial Kd(PAR) was relatively dependent on the inorganic particles (average relative contribution of 57.95%). The aOACₛ could explain 70–87% of Kd(PAR) variations. A linear model is used to predict Kd(PAR), as a function of light absorption coefficient of phytoplankton (aₚₕy), colored dissolved organic matter (aCDOM), and inorganic particles (aNAP): Kd(PAR) = 0.41 + 0.57 × aCDOM + 0.96 × aNAP + 0.57 × aₚₕy (R² = 0.87, n = 741, p < 0.001). In the lakes with low TSM concentration and non-eutrophic lakes with high TSM, aCDOM was the most powerful predicting factor on Kd(PAR). In eutrophic lakes with high TSM, aNAP had the most significant impact on Kd(PAR). This study allowed Kd(PAR) to be predicted from aOACₛ values in the inland waters.
Show more [+] Less [-]The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy Full text
2019
Mohammed, Asmaa Nady | Abdel Aziz, Sahar Abdel Aleem
There is a growing trend to implement biosecurity measures in small commercial broiler flocks and trying to replace ineffective antimicrobial with alternative materials to interevent a strategy for the control of Campylobacter bacteria in these farms. This study was designed to determine the prevalence rate of Campylobacter spp. in broiler flocks and their environment. Thereafter, assess the efficiency of chitosan, zinc oxide nanoparticles (ZnO NPs), and chitosan/ZnO NPs composite against Campylobacter strains to adopt a novel control strategy based on the ability to use those nanocomposites. A total of 220 samples were collected from broiler flocks, their environment, and farm attendants that direct contact with birds. All samples were subjected to microbiological investigation for isolation, then molecular identification of bacteria using PCR. ZnO NPs and chitosan/ZnO NPs composite were synthesized then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (X-RD). The efficiency of testing compounds was examined against 30 strains of Campylobacter coli (C. coli) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The highest percentages of C. coli were isolated from the manure storage area, and broiler litter followed by flies, and feeders (66.7, 53.3, 40.0, and 33.3%, respectively). Both chitosan/ZnO NPs and ZnO NPs at a concentration of 0.5 μg/mL and 1.5 μg/mL, respectively showed complete efficiency (100%) against C. coli compared with chitosan compound. In conclusion, manure storage area and broiler litter represented the main reservoir of Campylobacter bacterial contaminant followed by flies in broiler poultry farms. Chitosan/ZnO NPs composite can be used in any biosecurity program of poultry farms as an alternative to ineffective antimicrobial agents.
Show more [+] Less [-]Design and analysis of continuous-flow reactors for copper sulfide precipitation process by a computational method Full text
2019
Yang, Zhihui | Li, Bo | Zeng, Weizhi | Xiao, Gen | Liu, Shan | Hu, Hui | Guo, Wenxiang
Sulfide precipitation method has been widely applied in heavy metal–polluted wastewater treatment, due to the low solubility of most metal sulfide precipitates. Nevertheless, the relevant hydrodynamics studies on the metal sulfide precipitation process are rarely found in the literature. In this study, three continuous-flow sulfide precipitation reactors (CFSPRs) were designed and evaluated by a computational method. To characterize the process efficiency of copper sulfide precipitation in different reactors, fluid velocity field, species concentration distribution, and reaction rate distribution maps were acquired as simulation results. A two-factor designed set of boundary conditions was used to determine their effects on processing efficiency. The model results indicate that the inflow rate and reactor layout have significant effects on the copper sulfide precipitation process. The layout of reactor no. 3 and the inflow rate of 0.75 m/s prove to have higher treatment efficiencies than those at other conditions. Possible explanations for the simulation results were proposed. The model data of effluent concentration were compared and statistically analyzed with the measured concentrations of copper ion and sulfur ion in the outlet stream, and the results demonstrate a strong correlation between them, which suggests the model is reasonably accurate.
Show more [+] Less [-]Plant and microalgae consortium for an enhanced biodegradation of sulfamethazine Full text
2019
Xiong, Jiu-Qiang | Jeon, Byong-Hun | Govindwar, Sanjay P. | Kurade, Mayur B. | Patil, Swapnil M. | Park, Jung-Han | Kim, Ki Hyun
Pharmaceutical contamination in diverse water resources has been recognized as an emerging concern in environment because of its wide distribution and adverse effects on aquatic microorganisms and human health. Plant remediation with augmentation of microorganisms is a cost-effective and environmentally friendly approach toward an efficient treatment of pollutants, which can be easily applied in situ. (Bio)degradation of sulfamethazine (SMZ) by Iris pseudacorus, microalgal consortium, and plant–microalgal consortium was investigated. I. pseudacorus and microalgae could remove 63.5, and 25.8% of 1 mg SMZ L⁻¹, respectively, whereas, the plant–microalgal consortium achieved 74% removal. The identified intermediates extracted after plant remediation indicated (bio)degradation of SMZ was through ring cleavage, hydroxylation, and dehydroxylation. Pigment content (total chlorophyll and carotenoid) of I. pseudacorus was significantly influenced by SMZ stress. A phytoreactor (20 L) constructed with I. pseudacorus achieved 30.0% and 71.3% removal of 1 mg SMZ L⁻¹ from tap water and nutrient medium. This study has provided a better understanding of the metabolic mechanisms of SMZ in plants and showed the potential development of a plant–microalgal consortium as an advanced technology for treatment of these emerging contaminants. Graphical abstract
Show more [+] Less [-]Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China Full text
2019
Mei, Nan | Yang, Bin | Tian, Ping | Jiang, Ying | Sui, Pengxiang | Sun, Daquan | Zhang, Zhenping | Qi, Hua
Northeastern China has long-term densely tilled soils that supply approximately 20% of the annual total national grains. There are very few reports on the agricultural soil quality subjecting to the predatory tillage. Here, the soil quality index (SQI) of a brunisolic soil was calculated using the minimum data set (MDS) and integrated quality index (IQI). The topsoil layer was divided into plow layer (11.9 ± 1.9 cm) and plow pan (11.4 ± 2.6 cm) in fields of high yields (HYB), medium yields (MYB), and low yields (LYB). Our results showed that the MDS of the topsoil layer only contained chemical indicators. The bulk density (BD), as one of the most important soil quality indicators, was found of no significant differences in the topsoil layers. In different layers (i.e., the topsoil layer, plow layer, and plow pan), the value of SQI presented a consistent tendency of HYB > MYB > LYB (p < 0.05). The correlation between SQI and yield was higher in the plow layer (0.60) and plow pan (0.63) than the topsoil layer (0.47). This further verified the reasonability of using soil stratification for SQI calculation. Our findings indicate the potential of using soil quality assessments to examine soil productivity (e.g., fertilizer deficiency) in crop lands with soil stratification.
Show more [+] Less [-]The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China Full text
2019
Ge, Meng | Liu, Guijian | Liu, Houqi | Yuan, Zijiao | Liu, Yuan
The surface soils were collected from four areas in the Yellow River Delta (YRD), including three functional areas in the natural reserve of the YRD (the core area, buffer area, and experimental area) and a neighboring area of the natural reserve. The total concentrations, speciations, contamination status, and health risk assessments of the mercury (Hg) and arsenic (As) in surface soils of the YRD were investigated. The average Hg concentration was about three times that of the background value, while As was just slightly higher than the background. Hg levels in the sites of experimental area were significantly higher than those in the core area and buffer area, which was consistent with the human activity intensities of the three functional areas. However, no significant differences of As levels were observed across different areas. According to the sequential extraction experiments, only less than 5% of Hg and As were associated with the exchangeable fraction, while over 80% of them were found in the residual fraction, indicating low mobility and bioavailability of both Hg and As. The soil contamination status assessments suggested a “good state,” and the health risk assessments indicated a “low risk” of Hg and As in the soils of YRD.
Show more [+] Less [-]Mobility of electrostatically and sterically stabilized gold nanoparticles (AuNPs) in saturated porous media Full text
2019
Fjordbøge, Annika S. | Uthuppu, Basil | Jakobsen, Mogens H. | Fischer, Søren V. | Broholm, Mette M.
The stability of gold nanoparticles (AuNPs) stabilized electrostatically with citrate or (electro)sterically by commercially available amphiphilic block copolymers (PVP-VA or PVA-COOH) was studied under various physicochemical conditions. Subsequently, the mobility of the AuNPs in porous media (sand) was investigated in column studies under environmental relevant physicochemical conditions. Electrostatically stabilized AuNPs were unstable under most physicochemical conditions due to the compression of the electrical double layer. Consequently, aggregation and deposition rapidly immobilized the AuNPs. Sterically stabilized AuNPs showed significantly less sensitivity towards changes in the physicochemical conditions with high stability, high mobility with negligible retardation, and particle deposition rate coefficients ranging an order of magnitude (1.5 × 10⁻³ to 1.5 × 10⁻² min⁻¹) depending on the type and amount of stabilizer, and thereby the surface coverage and attachment affinity. The transport of sterically stabilized AuNPs is facilitated by reversible deposition in shallow energy minima with continuous reentrainment and blocking of available attachment sites by deposited AuNPs. The stability and mobility of NPs in the environment will thereby be highly dependent on the specific stabilizing agent and variations in the coverage on the NP. Under the given experimental conditions, transport distances of the most mobile AuNPs of up to 20 m is expected. Due to their size-specific plasmonic properties, the easily detectable AuNPs are proposed as potential model or tracer particles for studying transport of various stabilized NPs under environmental conditions.
Show more [+] Less [-]Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible? Full text
2019
Mesak, Carlos | Montalvão, Mateus Flores | Paixão, Caroliny Fátima Chaves | Mendes, Bruna de Oliveira | Araújo, Amanda Pereira da Costa | Quintão, Thales Chagas | Malafaia, Guilherme
Antineoplastic drugs (AD) have been increasingly used, but the disposal of their wastes in the environment via hospital effluent and domestic sewage has emerged as an environmental issue. The current risks posed to these animals and effects of pollutants on the reptiles’ population level remain unknown due to lack of studies on the topic. The aim of the present study was to evaluate the mutagenicity of neonate Podocnemis expansa exposed to environmental concentrations (EC) of cyclophosphamide (Cyc). The adopted doses were EC-I 0.2 μg/L and EC-II 0.5 μg/L Cyc. These doses correspond to 1/10 and ¼ of concentrations previously identified in hospital effluents. Turtles exposed to the CyC recorded larger total number of erythrocyte nuclear abnormalities than the ones in the control group after 48-h exposure. The total number of abnormalities for both groups (EC-I and EC-II) 96 h after the experiment had started was statistically similar to that of animals exposed to high Cyc concentration (positive control 5 × 10⁴ μg/L). This outcome confirms the mutagenic potential of Cyc, even at low concentrations. On the other hand, when the animals were taken to a pollutant-free environment, their mutagenic damages disappeared after 240 h. After such period, their total of abnormalities matched the basal levels recorded for the control group. Therefore, our study is the first evidence of AD mutagenicity in reptiles, even at EC and short-term exposure, as well as of turtles’ recovery capability after the exposure to Cyc.
Show more [+] Less [-]Fishing lines and fish hooks as neglected marine litter: first data on chemical composition, densities, and biological entrapment from a Mediterranean beach Full text
2019
Battisti, Corrado | Kroha, Silvio | Kozhuharova, Elina | De Michelis, Silvia | Fanelli, Giuliano | Poeta, Gianluca | Pietrelli, Loris | Cerfolli, Fulvio
We reported first data on the densities and chemical composition of fishing lines and fish hooks deposited on a Mediterranean beach. On a sampling area of 1.5 ha, we removed a total of 185,028 cm of fishing lines (density 12.34 cm/m²) and 33 hooks (density 22 units/ha). Totally, 637.62 g (42.5 mg/m²) of fishing lines were collected. We sampled 120 items entangled belongings to 7 animal taxa (density 6.49 items/100 m of fishing lines). We also observed a not quantifiable number of egagropiles (Posidonia oceanica spheroids), Rhodophyceae (Halymenia sp.) and segments of reeds of Phragmites communis, trapped in the fishing lines. Fourier transform infrared (FTIR) spectroscopy was used in order to identify the chemical composition of the fishing lines: 92% was made of nylon while 8.0% was determined as fluorocarbon based polymers (polyvinylidene fluoride). Because of their subtlety and reduced size, sandy beach cleaning operations should include at least two consecutive removal samplings: indeed, a part of this litter (12.14%) is not removed in the first sampling. The unexpected high density of fishing lines suggests specific management actions aimed to periodically remove this neglected anthropogenic litter.
Show more [+] Less [-]Fate of selected drugs in the wastewater treatment plants (WWTPs) for domestic sewage Full text
2019
Chiavola, Agostina | Tedesco, Pierpaolo | Boni, Maria Rosaria
The wide diffusion of Emerging Organic Micropollutants (EOMs) in the environment is receiving increasing attention due to their potential toxicological effects on living organisms. So far, the Wastewater Treatment Plants (WWTPs) have not been designed with the purpose to remove these contaminants; therefore, they can represent the major source of release into the environment both through the effluent and the wasted sludge. The fate of EOMs in the WWTPs is still not completely known; further investigations are therefore needed to assess if it is possible to exploit the existing treatment units to reduce EOM concentrations or which processes must be implemented to this purpose. Among the wide class of EOMs, the present study focused on the following drugs of abuse: amphetamine (AM), methamphetamine (MET), 11-nor-Δ9-THC-9carboxy (THC-COOH) and benzoylecgonine (BEG). Presence and removal efficiency of these drugs in the activated sludge tank of a WWTP for domestic sewage was investigated through analyses at both full-scale and laboratory scale. Determinations conducted in the full-scale WWTP highlighted that, among the searched drugs, AM was found to be the most abundant in the influent and effluent of the biological oxidation tank, while 11-nor-Δ9-THC-9carboxy was present at the lowest concentration. Some removal took place in the units prior to the oxidation tank, although the main reduction was observed to occur in the biological oxidation reactor. All the drugs showed a wide variability of the measured concentrations during the week and the day. Taking into account results from both full-scale observations and batch tests, removals in the biological reactor were found within the following ranges: 33–84% for AM, 33–97% for MET, 33–57% for BEG and 29–83% for THC-COOH. These removals were due to a combination of adsorption and biodegradation mainly, while volatilization did not play a significant role. Other processes, e.g. hydrolysis, were likely to occur.
Show more [+] Less [-]