Refine search
Results 381-390 of 2,513
Urban vegetation for reducing heat related mortality Full text
2014
Chen, Dong | Wang, Xiaoming | Thatcher, Marcus | Barnett, Guy | Kachenko, Anthony | Prince, Robert
The potential benefit of urban vegetation in reducing heat related mortality in the city of Melbourne, Australia is investigated using a two-scale modelling approach. A meso-scale urban climate model was used to quantify the effects of ten urban vegetation schemes on the current climate in 2009 and future climates in 2030 and 2050. The indoor thermal performance of five residential buildings was then simulated using a building simulation tool with the local meso-climates associated with various urban vegetation schemes. Simulation results suggest that average seasonal summer temperatures can be reduced in the range of around 0.5 and 2 °C if the city were replaced by vegetated suburbs and parklands, respectively. With the limited buildings and local meso-climates investigated in this study, around 5–28% and 37–99% reduction in heat related mortality rate have been estimated by doubling the city's vegetation coverage and transforming the city into parklands respectively.
Show more [+] Less [-]Investigation of microbial community structure in constructed mangrove microcosms receiving wastewater-borne polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) Full text
2014
Wang, Yafen | Wu, Yan | Bi, Na | Tam, Nora Fung-yee
The study aims to examine relationships between microbial community structure and mixed pollutants of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) in constructed wetland microcosms, planted with Excoecaria agallocha or Kandelia obovata, two common mangrove plant species, and under two tidal regimes, everyday tidal (Te) and no tidal flooding (Tn). Results showed both microbial community structure and the retained amounts of pollutants were significantly determined by tidal regime, while the effect of plant species was small. Higher amounts of PAHs but lower amounts of PBDEs were always retained in sediments under Te than Tn regimes. Accordingly, temporal and vertical distributions of microbial community structure differed greatly between the two tidal regimes. Redundancy analysis further revealed significant correlation between a subgroup of the mixed PAHs and PBDEs with variation in microbial community structure. The findings will help to propose specific strategies to improve the bioremediation efficiency of constructed wetland.
Show more [+] Less [-]Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions Full text
2014
Chen, Wei-Yu | Lin, Jiarong | Liao, Chung-Min
Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use.
Show more [+] Less [-]Explaining PAH desorption from sediments using Rock Eval analysis Full text
2014
Poot, Anton | Jonker, M.T.O. | Gillissen, Frits | Koelmans, Albert A.
Here, we provide Rock Eval and black carbon (BC) characteristics and polycyclic aromatic hydrocarbon (PAH) distribution coefficients (KD) for sediments from the Danube, Elbe, Ebro, and Meuse river basins. PAH desorption kinetic parameters were determined using sequential Tenax extractions. We show that residual carbon (RC) from Rock Eval analysis is an adequate predictor of fast, slow, and very slow desorbing fractions of 4-ring PAHs. RC correlated better than BC, the latter constituting only 7% of RC. A dual domain sorption model was statistically superior to a single domain model in explaining KD for low molecular weight PAHs, whereas the opposite was observed for high molecular weight PAHs. Because particularly the 4-ring PAHs are bioavailable and relevant from a risk assessment perspective and because their fast desorbing fractions correlate best with RC, we recommend RC as a relevant characteristic for river sediments.
Show more [+] Less [-]Do predictions from Species Sensitivity Distributions match with field data? Full text
2014
Smetanová, S. | Bláha, L. | Liess, M. | Schäfer, R.B. | Beketov, M.A.
Species Sensitivity Distribution (SSD) is a statistical model that can be used to predict effects of contaminants on biological communities, but only few comparisons of this model with field studies have been conducted so far. In the present study we used measured pesticides concentrations from streams in Germany, France, and Finland, and we used SSD to calculate msPAF (multiple substance potentially affected fraction) values based on maximum toxic stress at localities. We compared these SSD-based predictions with the actual effects on stream invertebrates quantified by the SPEARpesticides bioindicator. The results show that the msPAFs correlated well with the bioindicator, however, the generally accepted SSD threshold msPAF of 0.05 (5% of species are predicted to be affected) severely underestimated the observed effects (msPAF values causing significant effects are 2–1000-times lower). These results demonstrate that validation with field data is required to define the appropriate thresholds for SSD predictions.
Show more [+] Less [-]Levels and profile of several classes of organic contaminants in matched indoor dust and serum samples from occupational settings of Pakistan Full text
2014
Ali, Nadeem | Mehdi, Toufeer | Malik, Riffat N. | Eqani, Syed A.M.A.S. | Kamal, Atif | Dirtu, Alin C. | Neels, Hugo | Covaci, Adrian
Dust ingestion is an important route of human exposure to organic contaminants, especially for flame retardants (FRs) in occupational settings. Several classes of organic contaminants were analyzed in matched dust and serum samples from academics and workers in electronics and clothing stores of Faisalabad, Pakistan. The concentrations of contaminants varied in dust as follow: organophosphate FRs (∑PFRs) > novel brominated FRs (∑NBFRs) > polybrominated diphenyl ethers (∑PBDEs) > organochlorine pesticides (∑OCPs) > polychlorinated biphenyls (∑PCBs), while, in serum, concentration varied: ∑OCPs > bromophenols (∑BPs) > ∑PCBs > ∑HO-PCBs ≈ ∑PBDEs. Two NBFRs, namely 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE) and bis(2-ethylhexyl) tetrabromophthalate (TBPH), were detected in <10% of the serum samples. p,p′-DDE was the major contaminant in serum contributing to ∼75% of the total contaminant burden. Levels of Penta-BDE congeners in serum and dust were significantly correlated (r = 0.64, p < 0.01) for the academics, suggesting dust ingestion as an important determinant for their serum levels.
Show more [+] Less [-]Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds Full text
2014
Zhang, Meng | Shu, Liang | Shen, Xiaofang | Guo, Xiaoying | Tao, Shu | Xing, Baoshan | Wang, Xilong
Biochars from nitrogen-rich biomaterials (i.e., α-amylase, chitin and zein) were produced at different temperatures (i.e. 170, 250, 350 and 450 °C) and characterized, and their sorption for phenanthrene, naphthalene and 1-naphthol was investigated. The organic carbon content normalized-sorption coefficient (Koc) of the tested compounds by biochars increased with increasing charring temperature, attributed to the reduction of O-containing polar moieties especially the O-alkyl components, and the newly created aromatic carbon domains. The N-heterocyclic ring structure formed during charring process may enhance π–π interactions between aromatics and the aromatic components in the resulting biochars. However, π–π interactions did not dominate sorption of aromatics by N-rich biochars. Sorption of the tested compounds by N-rich biochars was predominantly controlled by the hydrophobic interactions between these chemicals and the aromatic components in biochars. Both N- and O-containing polar moieties at the biochar surfaces negatively affected their sorption for aromatics.
Show more [+] Less [-]Estimating terrestrial amphibian pesticide body burden through dermal exposure Full text
2014
Van Meter, Robin J. | Glinski, Donna A. | Hong, Tao | Cyterski, Mike | Henderson, W Matthew | Purucker, S Thomas
Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active ingredients through contact with contaminated soil: imidacloprid (logKow = 0.57), atrazine (logKow = 2.5), triadimefon (logKow = 3.0), fipronil (logKow = 4.11) or pendimethalin (logKow = 5.18). All amphibians had measurable body burdens at the end of the exposure in concentrations ranging from 0.019 to 14.562 μg/g across the pesticides tested. Atrazine produced the greatest body burdens and bioconcentration factors, but fipronil was more permeable to amphibian skin when application rate was considered. Soil partition coefficient and water solubility were much better predictors of pesticide body burden, bioconcentration factor, and skin permeability than logKow. Dermal uptake data can be used to improve risk estimates of pesticide exposure among amphibians as non-target organisms.
Show more [+] Less [-]Exploitation of deep-sea resources: The urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
2014
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M.V.M.
Exploitation of deep-sea resources: The urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
2014
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M.V.M.
The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor – high hydrostatic pressure.
Show more [+] Less [-]Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
1000
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M. V. M.
The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.
Show more [+] Less [-]Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment Full text
2014
Bertin, Delphine | Ferrari, Benoît J.D. | Labadie, Pierre | Sapin, Alexandre | Garric, Jeanne | Budzinski, Hélène | Houde, Magali | Babut, Marc
Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment Full text
2014
Bertin, Delphine | Ferrari, Benoît J.D. | Labadie, Pierre | Sapin, Alexandre | Garric, Jeanne | Budzinski, Hélène | Houde, Magali | Babut, Marc
Midge larvae (Chironomus riparius) were exposed to sediments from a deposition sampled at a site along the Rhône River (France) downstream of an industrial site releasing various perfluorinated chemicals. This sediment is characterized by high concentrations of perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTrDA) and a low perfluorooctane sulfonate (PFOS) concentration. Concentrations of 23 perfluoroalkyl compounds, including C4–C14 carboxylate acids, C4–C10 sulfonates, and seven precursors, were analyzed in overlying and pore water, sediment, and larvae. Midge larvae accumulated carboxylate acids (C11–C14), PFOS, and two precursors (perfluorooctane sulfonamide: FOSA and 6:2 fluorotelomer sulfonic acid, 6:2 FTSA). These substances accumulated mainly during the fourth instar larvae exponential growth phase. Accumulation of 6:2 FTSA, PFUnA, and PFOS occured via trophic and tegumentary routes. Other compounds mainly accumulated from food. Kinetics followed a partition model, from which uptake and elimination constants were derived.
Show more [+] Less [-]Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment Full text
2014
Bertin, D. | Ferrari, B. | Labadie, P. | Sapin, A. | Garric, J. | Budzinski, H. | Houde, M. | Babut, M. | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Aquatic Contaminant Research Division ; Environment and Climate Change Canada (ECCC)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | Midge larvae (Chironomus riparius) were exposed to sediments from a deposition sampled at a site along the Rhône River (France) downstream of an industrial site releasing various perfluorinated chemicals. This sediment is characterized by high concentrations of perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTrDA) and a low perfluorooctane sulfonate (PFOS) concentration. Concentrations of 23 perfluoroalkyl compounds, including C4eC14 carboxylate acids, C4eC10 sulfonates, and seven precursors, were analyzed in overlying and pore water, sediment, and larvae. Midge larvae accumulated carboxylate acids (C11eC14), PFOS, and two precursors (perfluorooctane sulfonamide: FOSA and 6:2 fluorotelomer sulfonic acid, 6:2 FTSA). These substances accumulated mainly during the fourth instar larvae exponential growth phase. Accumulation of 6:2 FTSA, PFUnA, and PFOS occured via trophic and tegumentary routes. Other compounds mainly accumulated from food. Kinetics followed a partition model, from which uptake and elimination constants were derived.
Show more [+] Less [-]