Refine search
Results 381-390 of 3,991
The developmental effect of difenoconazole on zebrafish embryos: A mechanism research
2016
Mu, Xiyan | Chai, Tingting | Wang, Kai | Zhu, Lizhen | Huang, Ying | Shen, Gongming | Li, Yingren | Li, Xuefeng | Wang, Chengju
Difenoconazole is a widely used triazole fungicide and has been reported to have negative impacts on zebrafish embryos. To investigate the mechanism of its developmental toxicity, zebrafish embryos were exposed to 0.5 and 2.0 mg/L difenoconazole for 96 h. The morphological and physiological indicators of embryo development were tested. The total cholesterol (TCHO) level, triglyceride (TG) level and malondialdehyde (MDA) content were measured at 96 hpf (hours post-fertilization). In addition, the transcription of genes related to embryo development, the antioxidant system, lipid synthesis and metabolism was quantified. Our results showed that a large suite of symptoms were induced by difenoconazole, including hatching regression, heart rate decrease, growth inhibition and teratogenic effects. 0.5 mg/L difenoconazole could significantly increase the TG content of zebrafish embryos at 96 hpf, while no apparent change in the TCHO and MDA level was observed post 96 h exposure. Q-PCR (quantitative real-time polymerase chain reaction) results showed that the transcription of genes related to embryonic development was decreased after exposure. Genes related to hatching, retinoic acid metabolism and lipid homeostasis were up-regulated by difenoconazole.
Show more [+] Less [-]Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum)
2016
Tripāṭhī, Pratibhā | Singh, Poonam C. | Mishra, Aradhana | Srivastava, Suchi | Chauhan, Reshu | Awasthi, Surabhi | Miśrā, Sīmā | Dwivedi, Sanjay | Kupur, Preeti T. | Kalra, Alok | Tripathi, R. D. (Rudra D.) | Nautiyal, Chandra S.
Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.
Show more [+] Less [-]Drospirenone intake alters plasmatic steroid levels and cyp17a1 expression in gonads of juvenile sea bass
2016
Blanco, María | Fernandes, Denise | Medina, Paula | Blázquez, Mercedes | Porte, Cinta
Drospirenone (DRO) is one of the most widely used progestins in contraceptive treatments and hormone replacement therapies. The pharmacokinetics and potential toxicological effects of DRO were investigated in juvenile sea bass (Dicentrarchus labrax) exposed through the diet (0.01–10 μg DRO/g) for up to 31 days. DRO was detected in the blood (4–27 ng/mL) of fish exposed to the highest concentration, with no significant bioaccumulation over time and no alteration of hepatic metabolizing enzymes, namely, CYP1A and CYP3A-catalysed activities and UDP-glucuronyltransferase (UGT). Pregnenolone (P5), progesterone (P4), 17α-hydroxyprogesterone (17P4), 17α-hydroxypregnenolone (17P5), androstenedione (AD) and testosterone (T) were determined in plasma and gene expression of cyp17a1, cyp19a1a and cyp11β analysed by qRT-PCR in gonads. The significant increase in plasmatic levels of 17P5, 17P4 and AD detected after 31 days exposure to 10 ng DRO/g together with the increased expression of cyp17a1 in females evidence the ability of DRO to alter steroid synthesis at low intake concentrations (7 ng DRO/day). However, the potential consequences of this steroid shift for female reproduction remain to be investigated.
Show more [+] Less [-]Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis
2016
Charlton, Alex | Sakrabani, Ruben | Tyrrel, Sean | Rivas Casado, Monica | McGrath, Steve P. | Crooks, Bill | Cooper, Pat | Campbell, C. D. (Colin D.)
The Long-Term Sludge Experiments (LTSE) began in 1994 as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on soil microbial biomass carbon (Cmic) were monitored for 8 years (1997-2005) in sludge amended soils at nine UK field sites. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations the experimental data has been reviewed using the statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e. the practical significance, rather than its statistical significance. The results presented here show that significant decreases in Cmic have occurred in soils where the total concentrations of Zn and Cu fall below the current UK statutory limits. For soils receiving sewage sludge predominantly contaminated with Zn, decreases of approximately 7–11% were observed at concentrations below the UK statutory limit. The effect of Zn appeared to increase over time, with increasingly greater decreases in Cmic observed over a period of 8 years. This may be due to an interactive effect between Zn and confounding Cu contamination which has augmented the bioavailability of these metals over time. Similar decreases (7–12%) in Cmic were observed in soils receiving sewage sludge predominantly contaminated with Cu; however, Cmic appeared to show signs of recovery after a period of 6 years. Application of sewage sludge predominantly contaminated with Cd appeared to have no effect on Cmic at concentrations below the current UK statutory limit.
Show more [+] Less [-]Over 100-year sedimentary record of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the continental shelf of the East China Sea
2016
Cai, Yizhi | Wang, Xinhong | Wu, Yuling | Li, Yongyu | Ya, Miaolei
Historical records of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were analyzed in two dated sediment cores (DH05 and DH11) collected from the continental shelf of the East China Sea (ECS) to investigate the influence of anthropogenic activities on marine sediment over the past century. The concentrations and fluxes of 15 PAHs were in the range of 28.6–96.5 ng g−1 and 7.6–35.2 ng cm−2 yr−1 in DH05 (1920s–2009), 18.8–76.4 ng g−1 and 13.9–30.9 ng cm−2 yr−1 in DH11 (1860s–2009). The sedimentary records of PAHs in the two cores generally reflected the economic development and energy consumption change in China. Identification of sources suggested that PAHs in ECS were predominantly from petrogenic origin and various combustion sources. A change of source from low- and moderate-temperature combustion to high-temperature combustion process was observed. Although a production ban of technical HCH and DDT was imposed in China in 1983, their sedimentary fluxes display increasing trends or strong rebounds from 1980s to 1990s as recorded in the core profiles. High proportions of DDD + DDE and γ-HCH suggested those OCPs mainly derived from early residuals. Temporal trends of PCBs presented relative high levels from 1970s to 1980s and high proportions of PCB congeners with 3–6 chlorines atoms indicated industrial sources.
Show more [+] Less [-]Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches
2016
Zhang, Quan | Ji, Chenyang | Yin, Xiaohui | Yan, Lu | Lu, Meiya | Zhao, Meirong
In recent years, phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental media and biota - and in humans - as the result of steady increase in global usage of PFRs. However, studies on the potential health and ecological risks of PFRs are still scarce. In this study, we investigated the thyroid hormone-disrupting activity and ecological risk of nine frequently detected PFRs by in vitro, in vivo and in silico approaches. Results from the dual-luciferase reporter gene assay showed that tributyl phosphate (TNBP), tricresyl phosphate (TMPP), tris(2-chloroisopropyl)phosphate (TCIPP) and tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCIPP) exerted thyroid receptor β (TRβ) antagonistic activity, with the values of RIC20 of 5.2 × 10−7, 2.7 × 10−7, 1.2 × 10−6 and 6.8 × 10−6 M, respectively. Molecular docking platform simulations suggested that the observed effects may be attributed to direct binding of PFRs to TR. Results from the T-screen assay indicated that TNBP and TMPP showed T3 antagonistic activity and thus significantly decreased the viability of GH3 cell lines in the presence of T3. The exposure assay using Xenopus tropicalis embryos revealed the potential teratogenic effect of TNBP, TMPP, TCIPP and TDCIPP. In conclusion, our studies revealed that some PFRs were potential thyroid hormone disruptors and may cause health and ecological risks. However, the mode of action of PFRs on TR remains uncertain. The correlation between the predicted affinity and the amplitude of the effect observed in cell based assay is encouraging, but not decisive. Further in vitro binding experiments of TR and PFRs are required. At the same time, the results provided here also demonstrated that multi-model approaches are of great importance to comprehensively evaluate the potential risks of emerging contaminants.
Show more [+] Less [-]Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)
2016
Yuan, Lilai | Li, Jiasu | Zha, Jinmiao | Wang, Zijian
Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow.
Show more [+] Less [-]Phosphorus leakage from fisheries sector – A case study in Thailand
2016
Prathumchai, Nuchnapa | Polprasert, Chongchin | Englande, A. J.
Although phosphorus (P) is an essential element needed for all lives, excess P can be harmful to the environment. The objective of this study aims to determine P flows in the fisheries sector of Thailand consisting of both sea and freshwater activities of captures and cultures. Currently, the annual fisheries catch averages 3.44 ± 0.50 Mt. Most comes from marine capture 1.95 ± 0.46 Mt, followed by coastal aquaculture 0.78 ± 0.09 Mt, freshwater aquaculture 0.49 ± 0.05 Mt, and inland capture 0.22 ± 0.01 Mt. Of this total, about 11% is contained in fresh products directly sold in local markets for consumption, while 89% is sent to processing factories prior to being sold in local markets and exported. The quantities of P entering the fisheries sector come from captures, import of fisheries products and feed produced from agriculture. This P input to the fisheries sector is found to average 28,506 t P.y−1 based on the past ten-year records. Of this total, P input from captures accounts for 76%; while, 11% represents aquatic feeds from agriculture and animal manures. About 13% is obtained from the imports of fishery products. Coastal and freshwater aquacultures are found to be P consumers because their feeds are almost all produced from agricultural crops grown inland. Moreover, these activities cause most of P losses, approximately 10,188 t P·y−1, which account for 89% of the total P loss from the fisheries sector. Overall, P in the fisheries sector is found to mobilize through three channels: (a) 44% is consumed within the country; (b) about 16% is exported; and, (c) 40% is lost from the ecosystem. Based on the results of this work it is recommended that future research be directed on ways to minimize P loss and maximize P recycle in Thailand's fisheries sector as to enhance its food security and curtail water pollution.
Show more [+] Less [-]Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value
2016
Yu, Huan-Yun | Liu, Chuanping | Zhu, Jishu | Li, Fangbai | Deng, Dong-Mei | Wang, Qi | Liu, Chengshuai
Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.
Show more [+] Less [-]Dynamics and recovery of a sediment-exposed Chironomus riparius population: A modelling approach
2016
Diepens, Noël J. | Beltman, Wim H.J. | Koelmans, Albert A. | Van den Brink, Paul J. | Baveco, Johannes M.
Models can be used to assess long-term risks of sediment-bound contaminants at the population level. However, these models usually lack the coupling between chemical fate in the sediment, toxicokinetic-toxicodynamic processes in individuals and propagation of individual-level effects to the population. We developed a population model that includes all these processes, and used it to assess the importance of chemical uptake routes on a Chironomus riparius population after pulsed exposure to the pesticide chlorpyrifos. We show that particle ingestion is an important additional exposure pathway affecting C. riparius population dynamics and recovery. Models ignoring particle ingestion underestimate the impact and the required recovery times, which implies that they underestimate risks of sediment-bound chemicals. Additional scenario studies showed the importance of selecting the biologically relevant sediment layer and showed population effects in the long term.
Show more [+] Less [-]