Refine search
Results 381-390 of 6,546
Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents Full text
2020
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qₘₐₓ) of 21.6 mg g⁻¹. However, the COD of the filtrate increased from 0 to 292 mg L⁻¹ during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L⁻¹. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Show more [+] Less [-]Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil Full text
2020
Cao, Pengle | Qiu, Kunyan | Zou, Xueyan | Lian, Mingming | Liu, Peisong | Niu, Liyong | Yu, Laigui | Li, Xiaohong | Zhang, Zhijun
Nano-silica as an important part of soil is an ideal carrier of passivator material. In this paper, nano-silica was modified by silane coupling agent containing mercapto group and iron (II) salt to afford an organic-inorganic hybrid containing –S-Fe-S functional group (coded as RNS-SFe) on the surface of nano-silica. Results demonstrate that the RNS-SFe nanoparticle has network-like spheroidal shape and a primary particle size is about 18.0 nm. The RNS-SFe hybrid as a potential immobilization agent for heavy metal in soil shows excellent performance for the remediation of the contaminated soil. Specifically, with a dosage of 3.0% (mass ratio) in the soil, it can immobilize bioavailable Pb, Cd, and As by 97.1%, 85.0%, and 80.1%, respectively. Namely, the RNS-SFe hybrid can transform the bioavailable Pb, Cd, and As into insoluble mercapto metal compounds (–S-Pb-S- and –S-Cd-S-) and less soluble iron arsenate (Fe₃(AsO₄)₂, FeAsO₄) precipitate on the surface of nano-silica particle, thereby reducing the toxicity and mobility of the toxic contaminant fractions. In the meantime, the immobilized products of the Pb, Cd and As fractions have good resistance against acid leaching. These results are contributive to the application of RNS-SFe for the remediation of multi-heavy metal-contaminated soils in field.
Show more [+] Less [-]Bioreactors for the remediation of hydrocarbon-polluted water of the Bitzal River, a place of environmental emergency due to the death of manatees Full text
2020
María del Refugio, Castañeda-Chávez | Ángel de Jesus, Isidoro-Pio | Fabiola, Lango-Reynoso | Manuel Alejandro, Lizardi-Jiménez
The objectives of this research are: identify the hydrocarbons in water from the Bitzal River, Tabasco; select a carbon source that serves as a representative substrate of the determined compounds; and finally, design an experimental proposal for bioreactors that are capable of consuming compounds formed by complex mixtures and, therefore be effective in the elimination of specific hydrocarbons. We identified 16 compounds that belong to different hydrocarbon fractions. Pentacene (24.3 ± 0.09 mg L⁻¹), n-nonane (2.11 ± 0.96 mg L⁻¹) and benzo [a] pyrene (1.39 ± 0.57 mg L⁻¹) were the compounds with the highest concentrations in water. Two culture media, mineral medium and seawater were used. Diesel and Mayan crude oil were used for each culture medium, with a total of four bioreactors. Diesel represented light- and medium-fraction hydrocarbons, while Mayan crude oil represented the heavy fraction as well as the recalcitrant and polycyclic aromatic hydrocarbons (PAH). The maximum growth of suspended solids for diesel in mineral medium reached 2.95 g L⁻¹, and diesel was completely consumed in 8 days. In seawater, suspended solids for diesel reached 2.70 g L⁻¹, and diesel was consumed in 12 days. For Mayan crude oil in mineral medium, suspended solids increased from 0.8 to 2.41 g L⁻¹, and Mayan crude oil was completely consumed in 12 days. Using seawater, Mayan crude oil also degraded in 12 days, and suspended solids growth reached 2.11 g L⁻¹. Compounds that simulate complex mixtures of hydrocarbons from light to heavy fractions could be degraded, and the use of bioreactors is an alternative method of hydrocarbon pollution remediation in the Bitzal River.
Show more [+] Less [-]Leaching behaviors and speciation of cadmium from river sediment dewatered using contrasting conditioning Full text
2020
Li, Tian | Shi, Yafei | Li, Xiaoran | Zhang, Huiqin | Pi, Kewu | Gerson, Andrea R. | Liu, Defu
Chemical conditioning is an effective strategy for improved river sediment dewatering affecting both the dewatering efficiency and subsequent resource utilization of the dewatered cake. Two types of conditioning agents, polyaluminium chloride (PAC)/cationic polyacrylamide (PAM) (coagulation precipitation conditioning agent, referred to as P–P conditioning) and ferrous activated sodium persulfate (advanced oxidation conditioning agent, referred to as F–S conditioning) were examined. With increasing leach liquid to solid (L/S) ratio the concentration of Cd for the real time leachates from the dewatered cakes decreased, but the leaching ratio of Cd in both P–P and F–S dewatered cakes increased. With the same L/S, the leaching ratio was reduced for both types of conditioning, as compared to no conditioning, with the leaching ratio being least with F–S conditioning. The leaching ratio of Cd in the dewatered cake with L/S of 100 L kg⁻¹ was reduced from 21.3% of the total Cd present for the un-conditioned sediment to 12.5% upon P–P conditioning and 11.6% upon F–S conditioning. Furthermore, the different conditioning methods affected the Cd speciation in the dewatered cakes reducing the easy-to-leach speciation of exchangeable and carbonate-bound Cd species and increasing the potential-to-leach speciation of iron-manganese oxide and organically bound Cd species and also the difficult-to-leach species. Risk assessment indicates that the risk due to Cd leaching from the dewatered cakes at L/S of 100 L kg⁻¹ was reduced from high risk to medium risk after P–P and F–S conditioning with reduced bioavailability.
Show more [+] Less [-]A non-invasive method to monitor marine pollution from bacterial DNA present in fish skin mucus Full text
2020
Montenegro, Diana | Astudillo-García, Carmen | Hickey, Tony | Lear, Gavin
Marine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution. Fish skin mucus is in direct contact with the marine environment, making it a favourable microenvironment for the formation of biofilm bacterial communities. In this study, we developed a non-invasive technique, sampling fish skin mucus to determine and analyse bacterial community composition using next-generation sequencing. We hypothesised that bacterial communities associated with the skin mucus of a common harbour benthic blennioid triplefin fish, Forsterygion capito, would reflect conditions of different marine environments. We detected clear differences in bacterial community alpha-diversity between contaminated and reference sites. Beta-diversity analysis also revealed differences in the bacterial community structure of the skin mucus of fish inhabiting different geographical areas. The relative abundance of different bacterial orders varied among sites, as determined by linear discriminant analysis (LDA) and effect size (LEfSe) analyses. The observed variation in bacterial community compositions correlated more strongly with variation in hydrocarbons than to various metal concentrations. Using advanced DNA sequencing technologies, we have developed a novel non-invasive, low-cost and effective tool to monitor the impacts of pollution through analysis of the bacterial communities associated with fish skin mucus.
Show more [+] Less [-]Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal) Full text
2020
Yukioka, Satoru | Tanaka, Shuhei | Nabetani, Yoshiki | Suzuki, Yuji | Ushijima, Taishi | Fujii, Shigeo | Takada, Hideshige | Van Tran, Quang | Singh, Sangeeta
Microplastics (MPs, plastics < 5 mm) are a growing concern in ecosystems, being found in the soil and water environment. One of the primary sources of MPs has been suspected to be road dust in urban areas as it can flow into waters with runoff. To understand the occurrence of MPs (100 μm–5 mm) in surface road dust of three cities (Kusatsu, Shiga, Japan; Da Nang, Vietnam; and Kathmandu, Nepal), we collected surface road dust samples. The samples were pretreated (organic matter decomposition and gravity separation), and all MP candidates were individually observed by microscope for color, shape, and size; and analyzed their polymer types using fourier transform infrared spectrometry. The abundances of MPs 100 μm to 5 mm in size were 2.0 ± 1.6 pieces/m2 (13 polymer types) in Kusatsu, 19.7 ± 13.7 pieces/m2 in Da Nang (14 types), and 12.5 ± 10.1 pieces/m2 in Kathmandu (15 types). We classified the MPs into two groups; containers/packaging-MPs and rubber-MPs. Among all MPs, the containers/packaging-MPs accounted for 55 ± 5% of the polymer types composition. In contrast, the rubber-MPs accounted for 16 ± 6% of all MPs which were higher than those previously published for environmental water and sediment samples. The containers/packaging-MPs were fragments of various colors while most of the rubber-MPs were fragments or granules in black. The number–size distributions of MPs showed that the mode of formation explains the differences between their polymer types (tearing for containers/packaging-MPs and abrasion for rubber-MPs). In Da Nang and Kathmandu, the abundance of containers/packaging-MPs and rubber-MPs were correlated so that those MPs might be micronized from the originated materials in the sources with the similar composition (e.g. dump points). It was indicated that the characteristics of MPs pollution in surface road dust might be different depending on waste management practices.
Show more [+] Less [-]Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches Full text
2020
Remili, Anaïs | Gallego, Pierre | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Dāsa, Kr̥shṇā
Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches Full text
2020
Remili, Anaïs | Gallego, Pierre | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Dāsa, Kr̥shṇā
Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ¹³C and δ¹⁵N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean.
Show more [+] Less [-]Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches Full text
2020
Remili, Anaïs | Gallego Reyes, Pedro | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Das, Krishna | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ13C and δ15N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean. | EXPOSURE OF HUMPBACK WHALES FROM THE SOUTHERN HEMISPHERE TO PERSISTENT ORGANIC POLLUTANTS: INFLUENCE OF THEIR ISOTOPIC NICHE, SEX AND AGE DETERMINED BY EPIGENETICS
Show more [+] Less [-]Effects of short-term exposure to environmentally-relevant concentrations of benzo(a)pyrene-sorbed polystyrene to White seabass (Atractoscion nobilis)☆ Full text
2020
Coffin, Scott | Magnuson, Jason T. | Vliet, Sara M.F. | Volz, David C. | Schlenk, Daniel
Plastic marine debris hyper-concentrates hydrophobic contaminants such as polycyclic aromatic hydrocarbons (PAHs) and can transfer these sorbed contaminants to biota following ingestion. PAHs are known to induce cardiotoxicity and visual toxicity at sublethal doses. Juvenile White seabass (Atractoscion nobilis) fish were fed environmentally relevant concentrations of either virgin polystyrene or benzo(a)pyrene (BaP)-sorbed polystyrene for 5 days and were monitored for changes in phototactic response, swimming behavior, and hepatic cytochrome p450 1A (CYP1A) enzyme activity. No significant differences in the monitored endpoints were recorded in fish that ingested either polystyrene or BaP-sorbed polystyrene relative to control fish following the short-term exposure. However, fish exposed to 252 μg/L BaP alone as a positive control had significantly elevated CYP1A enzyme activity (p = 0.046) and impaired phototactic response (p = 0.020), though no altered swimming behavior was observed (p = 0.843) relative to control fish. These results demonstrate that pelagic fish ingesting environmentally relevant concentrations of BaP-sorbed polystyrene for a short, 5-day duration do not demonstrate measurable changes in vision, swimming activity, nor CYP1A activity. High variability within enzyme activity and behavioral responses suggest that lack of significant effects may be due to low sample size.
Show more [+] Less [-]Determining and mapping the spatial mismatch between soil and rice cadmium (Cd) pollution based on a decision tree model Full text
2020
Wang, Yuanmin | Wu, Shaohua | Yan, Daohao | Li, Fufu | Chengcheng, Wang | Min, Cheng | Wenyu, Sun
Environmental complexity leads to differences in the spatial distribution of heavy metal pollution in soil and rice. Such spatial differences will seriously affect the safety of planted rice and can impact regional management and control. How to scientifically reveal these spatial differences is an urgent problem. In this study, the spatial mismatch relationship between Cd pollution in soil and rice grains (brown rice) was first explored by the interpolation method. To further reveal the causes of these, the specific recognition rules of the spatial relationship of Cd pollution were extracted based on a decision tree model, and the results were mapped. The results revealed a spatial mismatch in Cd pollution between the soil and rice grains in the study area, and the main results are as follows: (i) slight soil pollution and safe rice accounted for 68.88% of the area; (ii) slight soil pollution and serious rice pollution accounted for 13.39% of the area and (iii) safe soil and serious rice pollution accounted for 11.63% of the area. In addition, 11 recognition rules of Cd spatial pollution relationship between soil and rice were proposed, and the main environmental factors were determined: SOM (soil organic matter), Dis-residence (distance from residential area), soil pH and LAI (leaf area index). The average accuracy of rule recognition was 75.90%. The study reveals the spatial mismatch of heavy metal pollution in soil and crops, providing decision-making references for the spatial accurate identification and targeted prevention of heavy metal pollution spaces.
Show more [+] Less [-]Persistent ozone pollution episodes in North China exacerbated by regional transport Full text
2020
Gong, Cheng | Liao, Hong | Zhang, Lin | Yue, Xu | Dang, Ruijun | Yang, Yang
Summertime ozone (O₃) concentrations over China continue to increase although the governmental Clear Air Actions have been carried out since 2013. The worst O₃ pollution is confronted over North China Plain. Ozone polluted days (with observed regionally-averaged maximum daily 8-h average (MDA8) O₃ concentrations exceeding 80 ppbv) in May–July in North China increased from 35 days in year 2014 to 56 days in year 2018, and persistent O₃ pollution episodes that lasted for 5 days or longer (OPEs5) contributed 14.3% and 66.1% to those O₃ polluted days in 2014 and 2018, respectively. Model simulations suggest that O₃ transport from central eastern China (including Shandong, Henan, Jiangsu and Anhui Provinces) contributes 36% of the enhanced O₃ concentrations in North China during OPEs5 relative to the seasonal mean. We find that emission control of volatile organic compounds in central eastern China is most effective to alleviate intensity of OPEs5 in North China.
Show more [+] Less [-]