Refine search
Results 3801-3810 of 4,043
Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases Full text
2016
Gajanan, Phadke Girija | Elavarasan, Krishnamoorthy | Shamasundar, Bangalore Aswathnarayan
Enzymatic conversion of fish frame waste of threadfin breams (Nemipterus japonicus) to protein hydrolysate could be a solution for minimizing the pollution issues related to seafood processing operations and a way for the value addition to processing by-products. Protein hydrolysates from fish frame waste (FW) of thread fin breams (N. japonicus) were prepared and evaluated for bioactive properties such as angiotensin-I-converting enzyme (ACE) inhibitory activity and antioxidant and functional properties as a function of degree of hydrolysis (DH). Two different plant proteases, papain and bromelain, were used to prepare fish protein hydrolysates (FPH) and designated as HP (hydrolysates prepared using papain) and HB (hydrolysates prepared using bromelain). The ACE inhibitory activity of HP samples was higher at 5 and 10 % DH than that of the HB samples at DH 15 %, and there was no significant difference (p < 0.05). Antioxidant properties (2, 2 diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activity, ferric reducing power and lipid peroxidation inhibition) of hydrolysates increased with increase in DH. The HB samples at DH 15 % had significantly higher antioxidant properties than HP samples (p < 0.05). The solubility of HP and HB samples was high in a wide range of pH and increased with DH. The functional properties of HP and HB samples decreased significantly with increase in DH (p < 0.05). The fractionation of the HB–DH 15 % sample yielded three peptide fractions with the approximate molecular weight of peptides in the range of 7562–812 Da. Relatively, bromelain enzyme is more effective in producing the FPH with desirable bioactive and functional properties.
Show more [+] Less [-]Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process: effect of iron Full text
2016
Jia, Wenlin | Wang, Qian | Zhang, Jian | Yang, Weihua | Zhou, Xiaowei
The short- and long-term influences of ferric iron (Fe(III)) on nutrients removal and nitrous oxide (N₂O) emission during SNDPR process were evaluated. According to the continuous cycle experiments, it was concluded that the addition of Fe(III) could lower the nitrogen removal of the following cycle during SNDPR process, which was mainly induced by the chemical removal of phosphorus. However, the impacts were transitory, and simultaneous nitrogen and phosphorus removal would recover from the inhibition of Fe(III) after running certain cycles. Moreover, the addition of Fe(III) could stimulate N₂O emission transitorily during SNDPR process. However, if Fe(III) was added into reactor continuously, the nitrogen removal would be improved, especially at low Fe load condition. It was because that the activity of NO reductase was enhanced by the addition of Fe. However, the low Fe load in reactor would induce more N₂O emission. When Fe(III) load was 40 mg/L in the reactor, the N₂O yield was 10 % higher than control. The TN removal was weakened when Fe(III) load reached to 60 mg/L, and the N₂O yield was lower than control, due to the inhibition of the high Fe load on denitrification enzymes.
Show more [+] Less [-]Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia Full text
2016
Kadhum, Safaa A. | Ishak, Mohd Yusoff | Zulkifli, Syaizwan Zahmir
The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g¹ dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson’s correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.
Show more [+] Less [-]Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper Full text
2016
Kapoor, Vikram | Li, Xuan | Chandran, Kartik | Impellitteri, Christopher A. | Santo Domingo, Jorge W.
Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60–70 % of the bacterial community, while other nitrifiers represented <5 %. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper.
Show more [+] Less [-]The application of regenerable sorbents for mercury capture in gas phase Full text
2016
Lopez-Anton, M Antonia | Fernández-Miranda, Nuria | Martínez-Tarazona, M Rosa
Mercury is a well-known toxic element, and flue gas streams emitted from coal-fired utilities are one of the largest anthropogenic sources of this element. This study briefly reviews the proposed technologies for reducing mercury emissions from coal combustion, focusing on an emerging process which involves the use of regenerable sorbents and especially those loaded with noble metals. Among the mercury species formed during coal combustion, elemental mercury is the most difficult to remove from the flue gases due to its low reactivity and insolubility in water. The widespread interest in using regenerable sorbents with metals is due to their ability to retain elemental mercury. With this technology, not only can efficiencies of 100 % be reached in the retention of elemental mercury but also a way to avoid the generation of new wastes loaded with mercury. This study considers the main aspects that must be taken into account when developing effective regenerable sorbents for mercury capture, with special attention to sorbents containing noble metals. The characteristics of this process are compared with those of other processes in a more advanced state of development.
Show more [+] Less [-]Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel Full text
2016
Tellechea, Fernando Reynel Fundora | Martins, Marco Antonio | da Silva, Alexsandro Araujo | da Gama-Rodrigues, Emanuela Forestieri | Martins, Meire Lelis Leal
This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO₂ release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO₂ release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).
Show more [+] Less [-]Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements Full text
2016
Perrone, M. R. | Burlizzi, P.
Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ₁, λ₂, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but the LR and AOT dependence on wavelength was stronger for CP than for DP aerosols. The plots of the lidar ratio values at 355 nm versus the mean columnar values of the 532–1064 nm Ångström coefficient (Å c), the fine mode radius, the fine mode fraction at 532 nm (η c), and the color ratio, respectively, furthermore revealed the greater ability of the Å c and η c values to characterize different aerosol types.
Show more [+] Less [-]Urinary polyaromatic hydrocarbons are associated with adult celiac disease and kidney stones: USA NHANES, 2011–2012 Full text
2016
Shiue, Ivy
Links between environmental chemicals and human health have emerged over the last few decades, but the effects from polyaromatic hydrocarbons (PAH) were less studied, compared to other commonly known environmental chemicals such as heavy metals, phthalates, arsenic, phenols, and pesticides. Therefore, it was aimed to study the relationships of urinary PAH and adult digestive conditions using a large human sample in a national and population-based study in recent years. Data was retrieved from the US National Health and Nutrition Examination Surveys, 2011–2012 including demographics, self-reported health conditions, and urinary PAH. Statistical analyses included chi-square test, t test, survey-weighted logistic regression modeling, and population attributable risk (PAR) estimation. Of 5560 American adults aged 20–80 and included in the statistical analysis, urinary 4-hydroxyphenanthrene was significantly associated with celiac disease (odds ratio (OR) 1.61, 95 % confidence interval (CI) 1.14–2.26, P = 0.009). In addition, urinary 2-hydroxyfluorene (OR 1.35, 95 % CI 1.02–1.78, P = 0.038), 3-hydroxyfluorene (OR 1.35, 95 % CI 1.07–1.70, P = 0.015), 1-hydroxyphenanthrene (OR 1.48, 95 % CI 1.08–2.03, P = 0.017), 1-hydroxypyrene (OR 1.36, 95 % CI 1.05–1.77, P = 0.023), and 2-hydroxynapthalene (OR 1.25, 95 % CI 1.00–1.58, P = 0.054) were significantly associated with kidney stones, although not necessarily failing kidney. There were no statistically significant associations observed in the relationship of urinary PAH and liver problems, although higher levels of PAHs were observed. Urinary PAHs are associated with adult digestive conditions, although the causality cannot be established. From the research perspective, longitudinal monitoring from observational studies and experimental research understanding mechanism would be suggested. Regulation of minimizing PAHs exposure might need to be considered in future health and environmental policies.
Show more [+] Less [-]Microcosm-based interaction studies between members of two ecophysiological groups of bioemulsifier producer and a hydrocarbon degrader from the Indian intertidal zone Full text
2016
Markande, A. R. | Nerurkar, A. S.
Isolates were obtained from intertidal zone site samples from all five western and one eastern coastal states of India and were screened. These ecophysiological groups of aerobic, mesophilic, heterotrophic, sporulating, and bioemulsifier-producing bacteria were from Planococcaceae and Bacillaceae. This is the first report of bioemulsifier production by Sporosarcina spp., Lysinibacillus spp., B. thuringiensis, and B. flexus. In this group, Solibacillus silvestris AM1 was found to produce the highest emulsification activity (62.5 %EI) and the sample that yielded it was used to isolate the ecophysiological group of non-bioemulsifier-producing, hydrocarbon-degrading bacteria (belonging to Chromatiales and Bacillales). These yielded hitherto unreported degrader, Rheinheimera sp. CO6 which was selected for the interaction studies (in a microcosm) with bioemulsifier-producing S. silvestris AM1. The gas chromatographic study of these microcosm experiments revealed increased degradation of benzene, toluene, and xylene (BTX) and the growth of Rheinheimera sp. CO6 in the presence of bioemulsifier produced by S. silvestris AM1. Enhancement of the growth of S. silvestris AM1 in the presence of Rheinheimera sp. CO6 was observed possibly due to reduced toxicity of BTX suggesting mutualistic association between the two. This study elucidates the presence and interaction between enhancers and degraders in a hydrocarbon-contaminated intertidal zone and contributes to the knowledge during application of the two in remediation processes.
Show more [+] Less [-]Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism Full text
2016
Yoon, In-Ho | Bang, Sunbaek | Kim, Kyoung-Woong | Kim, Min-gyu | Pak, Sang-yun | Choi, Wang-Kyu
In this study, batch experiments were conducted to investigate the effect of the concentration of ferrous [Fe(II)] ions on selenate [Se(VI)] removal using zero-valent iron (ZVI). The mechanism of removal was investigated using spectroscopic and image analyses of the ZVI-Fe(II)-Se(VI) system. The test to remove 50 mg/L of Se(VI) by 1 g/L of ZVI resulted in about 60 % removal of Se(VI) in the case with absence of Fe(II), but other tests with the addition of 50 and 100 mg/L of the Fe(II) had increased the removal efficiencies about 93 and 100 % of the Se(VI), respectively. In other batch tests with the absence of ZVI, there were little changes on the Se(VI) removal by the varied concentration of the Fe(II). From these results, we found that Fe(II) ion plays an accelerator for the reduction of Se(VI) by ZVI with the stoichiometric balance of 1.4 (=nFe²⁺/nSe⁶⁺). Under anoxic conditions, the batch test revealed about 10 % removal of the Se(VI), indicating that the presence of dissolved oxygen increased the kinetics of Se(VI) removal due to the Fe(II)-containing oxides on the ZVI, as analyzed by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). The X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectra also showed that the reductive process of Se(VI) to Se(0)/Se(−II) occurred in the presence of the both ZVI and Fe(II). The final product of iron corrosion was lepidocrocite (γ-FeOOH), which acts as an electron transfer barrier from Fe(0) core to Se(VI). Therefore, the addition of Fe(II) enhanced the reactivity of ZVI through the formation of iron oxides (magnetite) favoring electron transfer during the removal of Se(VI), which was through the exhaustion of the Fe(0) core reacted with Se(VI).
Show more [+] Less [-]