Refine search
Results 391-400 of 5,153
Interaction of melamine and di-(2-ethylhexyl) phthalate exposure on markers of early renal damage in children: The 2011 Taiwan food scandal Full text
2018
Wu, Chia-Fang | Hsiung, Chao A. | Tsai, Hui-Ju | Tsai, Yi-Chun | Xie, Huimin | Chen, Bai-Hsiun | Wu, Ming-Tsang
Melamine and phthalate, mainly di-(2-ethylhexyl) phthalate (DEHP), are ubiquitously present in the general environment. We investigated whether urine melamine levels can modify the relationship between DEHP exposure and markers of early renal damage in children. A nationwide health survey for Children aged ≤12 years possibly exposed to phthalates were enrolled between August 2012 and January 2013. They were administered questionnaires to collect details regarding past DEHP exposure to phthalate-tainted foodstuffs. Urine samples were measured melamine levels, phthalate metabolites and biomarkers of renal damage, including urine microalbumin/creatinine ratio (ACR), N-acetyl-beta-d-glucosaminidase (NAG), and β2-microglobulin. The study included 224 children who had a median urine melamine level (μg/mmol creatinine) of 1.61 ranging 0.18–47.42. Positive correlations were found between urine melamine levels and urine ACR as well as urine NAG levels (both Spearman correlation coefficients r = 0.24, n = 224, p < .001). The higher the past DEHP exposure or urine melamine levels, the higher the prevalence of microalbuminuria. An interaction effect was also found between urine melamine levels and past DEHP exposure on urine ACR. Melamine levels may further modify the effect of past DEHP exposure on urine ACR in children.
Show more [+] Less [-]Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio Full text
2018
Fries, Anastasia E. | Schifman, Laura A. | Shuster, William D. | Townsend-Small, Amy
Recent studies have indicated that urban streets can be hotspots for emissions of methane (CH4) from leaky natural gas lines, particularly in cities with older natural gas distribution systems. The objective of the current study was to determine whether leaking sewer pipes could also be a source of street-level CH4 as well as nitrous oxide (N2O) in Cincinnati, Ohio, a city with a relatively new gas pipeline network. To do this, we measured the carbon (δ13C) and hydrogen (δ2H) stable isotopic composition of CH4 to distinguish between biogenic CH4 from sewer gas and thermogenic CH4 from leaking natural gas pipelines and measured CH4 and N2O flux rates and concentrations at sites from a previous study of street-level CH4 enhancements (77 out of 104 sites) as well as additional sites found through surveying sewer grates and utility manholes (27 out of 104 sites). The average isotopic signatures for δ13C-CH4 and δ2H-CH4 were −48.5‰ ± 6.0‰ and −302‰ ± 142‰. The measured flux rates ranged from 0.0 to 282.5 mg CH4 day−1 and 0.0–14.1 mg N2O day−1 (n = 43). The average CH4 and N2O concentrations measured in our study were 4.0 ± 7.6 ppm and 392 ± 158 ppb, respectively (n = 104). 72% of sites where fluxes were measured were a source of biogenic CH4. Overall, 47% of the sampled sites had biogenic CH4, while only 13% of our sites had solely thermogenic CH4. The other sites were either a source of both biogenic and thermogenic CH4 (13%), and a relatively large portion of sites had an unresolved source (29%). Overall, this survey of emissions across a large urban area indicates that production and emission of biogenic CH4 and N2O is considerable, although CH4 fluxes are lower than those reported for cities with leaky natural gas distribution systems.
Show more [+] Less [-]Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China Full text
2018
Zhang, Zhijuan | Yan, Xiuying | Gao, Feilong | Thái Phong, | Wang, Hao | Chen, Dan | Zhou, Lei | Gong, Daocheng | Li, Qinqin | Morawska, L. (Lidia) | Wang, Boguang
The process-specific emission of volatile organic compounds (VOCs) from a petroleum refinery in the Pearl River Delta, China was monitored to assess the health risk from VOCs to workers of this refinery. Over 60 VOCs were detected in the air samples collected from various sites in the refining, basic chemical, and wastewater treatment areas of the refinery using gas chromatography-mass spectrometry/flame ionization detection. The health risks of VOCs to the refinery workers were assessed using US Environmental Protection Agency (US EPA) and American Conference of Governmental Industrial Hygienists (ACGIH) methods. Monte Carlo simulation and sensitivity analysis were implemented to assess the uncertainty of the health risk estimation. The emission results showed that C5-C6 alkanes, including 2-methylpentane (17.6%), 2,3-dimethylbutane (15.4%) and 3-methylpentane (7.7%), were the major VOCs in the refining area. p-Diethylbenzene (9.3%), 2-methylpentane (8.1%) and m-diethylbenzene (6.8%) were dominant in the basic chemical area, and 2-methylpentane (20.9%), 2,3-dimethylbutane (11.4%) and 3-methylpentane (6.5%) were the most abundant in the wastewater treatment area. For the non-cancer risk estimated using the US EPA method, the total hazard ratio in the basic chemical area was the highest (3.1 × 103), owing to the highest level of total concentration of VOCs. For the cancer risk, the total cancer risks were very high, ranging from 2.93 × 10−3 (in the wastewater treatment area) to 1.1 × 10−2 (in the basic chemical area), suggesting a definite risk. Using the ACGIH method, the total occupational exposure cancer risks of VOCs in the basic chemical area were the highest, being much higher than those of refining and wastewater treatment areas. Among the areas, the total occupational exposure risks in the basic chemical and refining areas were >1, which suggested a cancer threat to workers in these areas. Sensitivity analysis suggested that improving the accuracy of VOC concentrations themselves in future research would advance the health risk assessment.
Show more [+] Less [-]Characterizing benzene series (BTEX) pollutants build-up process on urban roads: Implication for the importance of temperature Full text
2018
Liu, An | Hong, Nian | Zhu, Panfeng | Guan, Yuntao
Benzene series (BTEX) pollutants which are generated by traffic can deposit (build-up) on urban road surfaces. When they are washed-off by stormwater runoff, BTEX are toxic to ecological and human health if the stormwater is reused. To understand the risk posed by BTEX, it is essential to have an in-depth investigation on BTEX build-up, one of the most important stormwater pollutant processes. This study analysed the relationship between BTEX build-up and BTEX build-up's influential factors. The outcomes confirmed an important role of climatic factors (particularly temperature) on influencing BTEX build-up. This has not been considered in previous stormwater studies although this has been widely focused in atmospheric pollution. BTEX build-up loads were generally higher and the variability was low in dry seasons with low temperature such as winter and spring. Additionally, the influence of temperature on BTEX build-up on urban road surfaces is more important in the case of larger particles (such as >75 μm) than smaller particles. The study also showed that petrol station areas have a potential to export stormwater runoff with high BTEX concentrations, compared to typical urban roads. This is particularly applicable in winter and spring. These outcomes can provide useful guidance to improving stormwater quality modelling approaches, especially relevant to estimation of BTEX concentrations in the stormwater.
Show more [+] Less [-]Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer Full text
2018
Yang, Yonggang | Guo, Tingting | Jiao, Wentao
There is less research on the hydrological system and its destruction processes mechanism in the mining areas, especially combined application of isotope technology and chemical signals, which is a key scientific problem that need to be solved. This study takes Jinci spring area in Shanxi as a case study. It is based on the data of hydrology and mining condition from 1954 to 2015, combining monitoring experiments, O18, D, S34 and N15 tracing, chemical and model simulation. This study investigates the hydrological regularity and impacts of mining activities on water quantity and quality, and reveals the destruction process of hydrological system. The results show that: (1) Water chemical type shows an evolutionary trend of HCO3−-Ca2+-Mg2+→SO42--HCO3--Ca2+-Mg2+→SO42--Ca2+-Mg2+, due to the influence of exploitation and fault zones. Isotope tracer shows that mine pit water is formed by a mixture of pore water, karst water and surface water. (2) Although precipitation and seepage have a certain impact on the reducing of groundwater quantity, over-exploitation of water resource is still the main reason for reducing of groundwater quantity. Under the conditions of keeping the exploitation intensity at the current level or reducing it by 10%, groundwater level shows a declining trend. Under the condition of reducing it by 30%, groundwater level starts to rise up. When reducing by 50%, groundwater level reaches its highest point. Coalmining changes the runoff, recharge and discharge paths. (3) From 1985 to 2015, Water quality in the mining area is worsening. Ca2+ increases by 35.30%, SO42− increases by 52.80%, and TDS (Total Dissolved Solid) increases by 67.50%. Nitrates come from the industrial and domestic wastewater, which is generated by mining. The percentage of groundwater coming from gypsum dissolusion is 67.51%, and the percentage from coal measure strata water is 34.49%. The water qualities of river branches are generally deteriorated.
Show more [+] Less [-]Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation Full text
2018
Guerra, Alaine B. | Oliveira, Jorge S. | Silva-Portela, Rita C.B. | Araújo, Wydemberg | Carlos, Aline C. | Vasconcelos, Ana Tereza R. | Freitas, Ana Teresa | Domingos, Yldeney Silva | de Farias, Mirna Ferreira | Fernandes, Glauber José Turolla | Agnez-Lima, Lucymara F.
Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation.
Show more [+] Less [-]Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: Evidence from four-year observations Full text
2018
Gong, Ping | Wang, Xiaoping | Sheng, Jiujiang | Wang, Hailong | Yuan, Xiaohua | He, Yuanqing | Qian, Yun | Yao, Tandong
Lijiang is a high-altitude city located on the eastern fringe of the Tibetan Plateau, with complex seasonal atmospheric circulations (i.e. westerly wind, Indian Monsoon, and East Asia Monsoon). Very few previous studies have focused on seasonal variations and sources of organic pollutants in Lijiang. In this study, a four-year air campaign from June 2009 to July 2013 was conducted to investigate the temporal trends and the sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds [including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)]. The atmospheric PAH concentrations in winter are 2–3 times of those in summer, probably because of the combined result of enhanced local emission and long-range atmospheric transport (LRAT) during winter. Traffic pollution was the primary local source of PAHs, while biomass burning is the dominant LRAT source. OCPs and PCBs also mainly underwent LRAT to reach Lijiang. The peak concentrations of most of OCPs occurred in pre-monsoon season and winter, which were carried by air masses from Myanmar and India through westerly winds. As compared with other sites of the Tibetan Plateau, without the direct barrier of the Himalaya, Lijiang is easily contaminated by the incursion of polluted air masses.
Show more [+] Less [-]Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions Full text
2018
Zhao, Chen | Wang, Zhihua | Wang, Shuzhong | Li, Xiang | Wang, Chong-Chen
In situ photocatalytic degradation of dissolved organic matter (DOM) of stormwater runoff can efficiently improve the aquatic environment quality and relieve the wastewater treatment pressure. In this work, photocatalytic degradation of DOM in TiO₂ (AEROXIDE® P-25) photocatalyst under illumination of ultraviolet (UV) light was carried out, considering the influence of various factors like TiO₂ dosage, solution pH along with the existence of co-existing ions (Cu²⁺ and H₂PO₄⁻). Generally, the variations of dissolved organic carbon (DOC), UV-based parameters and peak intensities of fluorescent constituents with UV exposure time fitted perfectly with the pseudo-first-order kinetics model. The total DOM removal efficiency was affected by diversiform factors like adsorption capacity of TiO₂, UV light utilization efficiency, reactive free radicals produced and the influence of co-existing ions. The results of fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) modeling demonstrated that all the photodegradation rates for three identified fluorescent constituents (protein-like constituent 1 and 3, humic-like constituent 2) were faster than UV-absorbing chromophores, suggesting the DOM molecules in urban stormwater runoff contained much more π*-π transition structures. In addition, H₂PO₄⁻ ions affected the photodegradation of DOM by capturing positive holes (h⁺) and hydroxyl radical (·OH), whereas Cu²⁺ ions were inclined to generate Cu-protein complexes that were more difficult to degrade than the other Cu-DOM complexes. This study supplied novel insights into the photocatalytic degradation mechanism of individual organic constituent in urban stormwater runoff and explored the influences of co-existing contaminants on their adsorption-photocatalysis processes.
Show more [+] Less [-]Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with 13C-isotope probing Full text
2018
Nowak, Karolina M. | Telscher, Markus | Seidel, Erika | Miltner, Anja
Bromoxynil is a widely used nitrile herbicide applied to maize and other cereals in many countries. To date, still little is known about bromoxynil turnover and the structural identity of bromoxynil non-extractable residues (NER) which are reported to occur in high amounts. Therefore, we investigated the microbial turnover of ¹³C-labeled bromoxynil for 32 days. A focus was laid on the estimation of biogenic NER based on the turnover of ¹³C into amino acids (AA). At the end, 25% of ¹³C₆-bromoxynil equivalents were mineralized, 2% assigned to extractable residues and 72.5% to NER. Based on 12% in the ¹³C-total AA and an assumed share of AA of 50% in microbial biomass we arrived at 24% of total ¹³C-biogenic NER. About 33% of the total ¹³C-NER could thus be explained by ¹³C-biogenic NER; 67% was unknown and by definition xenobiotic NER with potential for toxicity. The ¹³C label from ¹³C₆-bromoxynil was mainly detected in the humic acids (28.5%), but significant amounts were also found in non-humics (17.6%), fulvic acids (13.2%) and humins (12.7%). The ¹³C-total amino acids hydrolyzed from humic acids, humins and fulvic acids amounted to 5.2%, 6.1% and 1.2% of ¹³C₆-bromoxynil equivalents, respectively, corresponding to total ¹³C-biogenic NER amounts of 10.4%, 12.2% and 2.4%. The humins contained mostly ¹³C-biogenic NER, whereas the humic and fulvic acids may be dominated by the xenobiotic NER. Due to the high proportion of unknown ¹³C-NER and particularly in the humic and fulvic acids, future studies should focus on the detailed characterization of these fractions.
Show more [+] Less [-]Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis Full text
2018
Petriello, Michael C. | Hoffman, Jessie B. | Vsevolozhskaya, Olga | Morris, Andrew J. | Hennig, Bernhard
The gut microbiome is sensitive to diet and environmental exposures and is involved in the regulation of host metabolism. Additionally, gut inflammation is an independent risk factor for the development of metabolic diseases, specifically atherosclerosis and diabetes. Exposures to dioxin-like pollutants occur primarily via ingestion of contaminated foods and are linked to increased risk of developing cardiometabolic diseases. We aimed to elucidate the detrimental impacts of dioxin-like pollutant exposure on gut microbiota and host gut health and metabolism in a mouse model of cardiometabolic disease. We utilized 16S rRNA sequencing, metabolomics, and regression modeling to examine the impact of PCB 126 on the microbiome and host metabolism and gut health. 16S rRNA sequencing showed that gut microbiota populations shifted at the phylum and genus levels in ways that mimic observations seen in chronic inflammatory diseases. PCB 126 reduced cecum alpha diversity (0.60 fold change; p = 0.001) and significantly increased the Firmicutes to Bacteroidetes ratio (1.63 fold change; p = 0.044). Toxicant exposed mice exhibited quantifiable concentrations of PCB 126 in the colon, upregulation of Cyp1a1 gene expression, and increased markers of intestinal inflammation. Also, a significant correlation between circulating Glucagon-like peptide-1 (GLP-1) and Bifidobacterium was evident and dependent on toxicant exposure. PCB 126 exposure disrupted the gut microbiota and host metabolism and increased intestinal and systemic inflammation. These data imply that the deleterious effects of dioxin-like pollutants may be initiated in the gut, and the modulation of gut microbiota may be a sensitive marker of pollutant exposures.
Show more [+] Less [-]