Refine search
Results 391-400 of 4,938
The removal of arsenic from arsenic-bearing groundwater in In-situ and Ex-situ environment using novel natural magnetic rock material and synthesized magnetic material as adsorbent: A comparative assessment Full text
2019
Maity, Jyoti Prakash | Ho, Pei-Ru | Huang, Yi-hsun | Sun, An-Cheng | Chen, Chien-Cheng | Chen, Chien-Yen
The removal of arsenic from groundwater is an important issue for environmental safety and human health. Research focused on the comparative assessment of arsenic removal from arsenic-bearing groundwater and arsenic-containing-synthetic water (2 mg/L) using natural magnetic material (NMM) (rock) and synthesized magnetic material (SMM) by Bacillus pasteurii and humic acid. The arsenic-bearing groundwater (97.56 ± 0.05 μg/L) exceed the WHO limit (10 μg/L) of arsenic concentration for drinking water. The NMM contains dominantly magnetite, hematite, ferrihydrate, coesite, quartz, and stishovite. The NMM of natural rock exhibited the existence of iron (6.25–8.86% Fe₃O₄), which is widespread and important component in sedimentary rocks. The investigation on vibrating sample magnetometers (VSM) of NMM and SMM demonstrated the typical magnetization properties, which can be separated after arsenic removal process. The thermogravimetric analysis (TGA) of SMM displayed the existence of organic matter decomposition during particle synthesis. The TEM and SEM exhibited the nanoparticle particle formation within the range of 10–39 nm (10–20 nm particle Fe₃O₄ through B. pasteurii). FTIR spectrum (before and after removal of arsenic) indicated the existence and binding nature in between arsenic and iron. >90% of arsenic was removed from arsenic-bearing groundwater using Fe₃O₄, Fe₃O₄ (N₂-Environment), Fe₃O₄ with humic acid, and Fe₃O₄ with B. pasteurii after 25 min, 8 min, 13 min and 120 min, respectively. In case of NMM in Site-A, the arsenic removal was observed very fast as 85–87% within 30 s, whereas 95–99%, 93–95% and 88–91% removal detected using the sample of Site-A, Site-B, and Site-C respectively, after 120 min at natural pH (8.31 ± 0.05) of arsenic-bearing groundwater. Thus, NMM, (ecofriendly green material), can be applicable for arsenic removal from arsenic-bearing groundwater.
Show more [+] Less [-]Employing multi-omics to elucidate the hormetic response against oxidative stress exerted by nC60 on Daphnia pulex Full text
2019
This study evaluated hormetic effect of oxidative stress exerted by fullerene crystals (nC₆₀) on Daphnia pulex, employing transcriptomics and metabolomics. D. pulex were exposed to various concentrations of nC₆₀ for 21 days. Hormetic effect of oxidative stress was most evident after 7 days, with markedly increased L-Glutathione (GSH) concentration and Superoxide Dismutase (SOD) activity at low doses of nC₆₀ exposure, and oppositely at high doses. The transcriptomics and metabolomics were used to elucidate the molecular mechanism underlying the hormesis in oxidative stress. There were significant alterations in major pathways involving oxidative stress and energy metabolism in D. pulex. Some important intermediates and the expression of their regulatory genes coincided with each other with first up-regulated and then down-regulated with the concentration increased, consistent with the hormesis description. The nC₆₀ interfered the TCA cycle of D. pulex. The synthesis of L-cysteine and glutamate was directly affected, and further disturbed the synthesis of GSH. This work is of great significance to provide the molecular-level evidence into the hormetic effect in oxidative stress of D. pulex exposed to nC₆₀.
Show more [+] Less [-]Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite Full text
2019
Degrading aquatic organic pollutants efficiently is very important but strongly relied on the design of photocatalysts. Porous graphene could increase photocatalytic performance of ZnO nanoparticles by promoting the effective charge separation of electron-hole pairs if they can be composited. Herein, porous graphene, ZnO nanoparticles and porous graphene/ZnO nanocomposite were prepared by fine tuning of partial combustion, which graphene oxide imperfectly covered by the layered Zn salt was combusted under muffle furnace within few minutes. Resulting ZnO nanoparticles (32–72 nm) are dispersed uniformly on the surface of graphene sheets, the pore sizes of porous graphene are in the range from ∼3 to ∼52 nm. The synthesized porous graphene/ZnO nanocomposite was confirmed to show enhanced efficiency under natural sunlight irradiation compared with pure ZnO nanoparticles. Using porous graphene/ZnO nanocomposite, 100% degradation of methyl orange can be achieved within 150 min. The synergetic effect of photocatalysis and adsorption is main reason for excellent MO degradation of PG/ZnO nanocomposite. This work may offer a new route to accurately prepare porous graphene-based nanocomposite and open a door of their applications.
Show more [+] Less [-]Evaluating the utility of elemental measurements obtained from factory-calibrated field-portable X-Ray fluorescence units for aquatic sediments Full text
2019
Dunnington, Dewey W. | Spooner, Ian S. | Mallory, Mark L. | White, Chris E. | Gagnon, Graham A.
We assessed factory-calibrated field-portable X-ray fluorescence (pXRF) data quality for use with minimally-prepared aquatic sediments, including the precision of replicate pXRF measurements, accuracy of factory-calibrated pXRF values as compared to total digestion/ICP-OES concentrations, and comparability of calibrated pXRF values to extractable concentrations. Data quality levels for precision, accuracy, and comparability were not equivalent for element/analyzer combinations. All analyses of elements that were assessed for precision and accuracy on a single analyzer were both precise (<10% relative standard deviation) and accurate (r2 > 0.85) for K, Ca, Ti, Mn, Fe, and Zn. Calibrated pXRF values for Al, K, Ca, Ti, Mn, Fe, Cu, Zn, and Pb were within ∼10% relative difference of total digestion/ICP-OES concentrations. Calibrated pXRF values for Fe, Cu, Zn, As, and Pb were within ∼20% relative difference of extractable concentrations. Some elements had a higher level of data quality using specific analyzers, but in general, no pXRF analyzer had the highest level of data quality in all categories. Collectively, our data indicate that a wide range of factory-calibrated pXRF units are capable of providing high-quality total concentrations for the analysis of aquatic sediments.
Show more [+] Less [-]Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes Full text
2019
Zhou, Shu-Yi-Dan | Zhu, Dong | Giles, Madeline | Yang, Xiao-Ru | Daniell, Tim | Neilson, Roy | Zhu, Yong-Guan
In China, the common use of antibiotics in agriculture is recognized as a potential public health risk through the increasing use of livestock derived manure as a means of fertilization. By doing so this may increase the transfer of antibiotic resistance genes (ARGs) from animals, to soils and plants. In this study two staple crops (rice and wheat) were investigated for ARG enrichment under differing fertilization regimes. Here, we applied 4 treatments, no fertilizer, mineral fertilizer, clean (reduced antibiotic practice) and dirty (current antibiotic practice) pig manure, to soil microcosms planted with either rice or wheat, to investigate fertilization effects on the abundance of ARGs in the respective phyllospheres. For both rice and wheat, samples were collected after two separate fertilization periods. In total, 162 unique ARGs and 5 mobile genetic elements (MGEs) were detected from all rice and wheat samples. The addition of both clean and dirty manure, enhanced ARG abundance significantly when compared to no fertilizer treatments (P < 0.001), though clean manure enriched ARGs to a lesser extent than dirty manure, in all rice and wheat samples (P < 0.001). The classes of ARGs recorded were different between crops, with wheat samples having a higher ARG diversity than rice. These results revealed that staple crops in China such as rice and wheat may be a reservoir for ARGs when clean and dirty pig manure is used for fertilization.
Show more [+] Less [-]Adsorption and fractionation of Pt, Pd and Rh onto inorganic microparticles and the effects of macromolecular organic compounds in seawater Full text
2019
Adsorption and fractionation of Pt, Pd and Rh (defined here as platinum group elements, PGEs) onto the representative inorganic microparticles, including Fe2O3, MnO2, CaCO3, SiO2, Al2O3 and kaolinite in seawater were investigated. The effects of macromolecular organic compounds (MOCs) as the representatives of organic matter, including humic acids (HA), bovine serum albumin (BSA) and carrageenan, on the adsorption were also studied considering that organic matter is ubiquitous in seawater and indispensable to marine biogeochemical cycles. In the absence of MOCs, the representative mineral particles Fe2O3 and MnO2 had the strongest interaction with PGEs. The adsorption of PGEs onto the representative biogenic particles SiO2 and CaCO3 and lithogenic particles Al2O3 and kaolinite was similar or weaker than onto the mineral particles. MOCs inhibited the interaction between PGEs and the particles except for Pt and Pd onto the biogenic particles in artificial seawater. This impediment may be closely related to the interaction between particles, MOCs and elements. The partition coefficient (log Kd) of Pt was similar (∼4.0) in the presence of MOCs, indicating that the complexation between Pt and MOCs was less important than hydrolysis or adsorption onto the acid oxide particle surface. Rh tended to fractionate onto the mineral and lithogenic particles in the presence of HA and carrageenan, while Pd was more likely to fractionate onto the biogenic particles. However, BSA enhanced the fractionation tendency of Pd onto the mineral particles. The results indicate that the adsorption behavior of Pd onto inorganic particles was significantly affected by the composition or the type of MOCs. Hence, the interaction between PGEs and inorganic particles may be greatly affected by the macromolecular organic matter in the ocean.
Show more [+] Less [-]Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage Full text
2019
In developing countries, many urban rivers are suffering from heavy contamination by untreated sewage, which implies great microbial risks. However, information regarding the bacterial pathogen diversity and distribution in urban rivers is highly limited. In this study, 41 water samples of fifteen rivers and eight samples from two sewage treatment plants in Changzhou City of Yangtze River Delta were sampled. Next-generation sequencing and a self-built reference pathogen database were used to investigate the diversity of enteric and environmental pathogens. The results indicated that the studied urban rivers were harboring diverse potential pathogen species, which primarily included enteric pathogens in Arcobacter and Bacteroides, and environmental pathogens in Acinetobacter, Aeromonas and Pseudomonas. Quantification of twelve pathogens/indicators of interest by qPCR showed that Escherichia coli, Enterococcus faecalis, Campylobacter jejuni, Arcobacter cryaerophilus, Acinetobacter johnsonii, Acinetobacter lwoffii and Aeromonas spp. were abundant, with median values ranging from 3.30 to 5.85 log10 copies/100 mL, while Salmonella, Legionella pheumophila, Mycobacterium avium, Pseudomonas aeruginosa and Staphylococcus aureus were infrequently quantified. The pollution of nutrients and human intestinal microorganisms indicated by specific markers were found to be prevalent but with different levels in the rivers. The correlation analyses revealed that the diversity (p < 0.01) and concentrations (p < 0.05) of the enteric pathogens highly correlated to the human fecal marker abundances, which indicated that the enteric pathogens in the urban rivers were likely to have originated from domestic sewage. The environmental pathogens, which are different from the enteric ones, showed various distribution patterns, and some of them were more abundant in the rivers of rich nutrient. Our findings provide a comprehensive understanding of the bacterial pathogen distribution and influencing factors in urban rivers that are impacted by domestic sewage, thereby establishing the foundation for urban water management.
Show more [+] Less [-]Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons Full text
2019
Li, Yingjie | Zhou, Xiaoxia | Dong, Lijie | Lai, Yujian | Li, Shasha | Liu, Rui | Liu, Jingfu
The bioavailability of a pollutant is usually evaluated based on its freely dissolved concentration (Cfree), which can be measured by negligible-depletion equilibrium extraction that is commonly suffered from long equilibration time. Herein, metal-organic framework (MOF) composites (Fe3O4@MIL-101), consists of a magnetic Fe3O4 core and a MIL-101 (Cr) MOF shell, is developed as sorbents for negligible-depletion magnetic solid-phase extraction (nd-MSPE) of freely dissolved polyaromatic hydrocarbons (PAHs) in environmental waters. The freely dissolved PAHs in 1000 mL water samples are extracted with 1.5 mg MOF composites, and desorbed with 0.9 mL of acetonitrile under sonication for 5 min. The MOF composites exclude the extraction of dissolved organic matter (DOM) and DOM-associated PAHs by size exclusion. Additionally, the combined interactions (hydrophobic, π-π and π-complexation) between PAHs and composites markedly reduced the extraction equilibration time to < 60 min for all the studied PAHs with logKOW up to 5.74. Moreover, the porous coordination polymers property of the MOFs makes the proposed nd-MSPE based on the partitioning of PAHs and thus excludes the competitive adsorption of coexisting substances. The developed nd-MSPE approach provides low detection limits (0.08–0.82 ng L−1), wide linear range (1–1000 ng L−1) and high precision (relative standard deviations (RSDs) (3.3–4.8%) in determining Cfree of PAHs. The measured Cfree of PAHs in environmental waters are in good agreement with that of verified method. Given the large diversity in structure and pore size of MOFs, various magnetic MOFs can be fabricated for task-specific nd-MSPE of analytes, presenting a prospective strategy for high-efficiency measuring Cfree of contaminants in environments.
Show more [+] Less [-]Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge Full text
2019
Xia, Hui | Chen, Jingyang | Chen, Xuemin | Huang, Kui | Wu, Ying
Vermicomposting is a green technology used in the recycling of sewage sludge using the joint action of earthworms and microorganisms. Although tetracycline is present in abundance in sewage sludge, little attention has been given to its influence on vermicomposts. This study investigated the effects of different tetracycline concentrations (0, 100, 500 and 1000 mg/kg) on the decomposition of organic matter, microbial community and antibiotic resistance genes (ARGs) during vermicomposting of spiked sludge. The results showed that 100 mg/kg tetracycline could stimulate earthworms’ growth, accompanied by the highest humification and decomposition rates of organic matter in the sludge. The abundance of active microbial cells and diversity decreased with the increase in tetracycline concentrations. The member of Bacteroidetes dominated in the tetracycline spiked treatments, especially in the higher concentration treatments. Compared to its counterparts, the addition of tetracycline significantly increased the abundances of ARGs (tetC, tetM, tetX, tetG and tetW) and Class 1 integron (int-1) by 4.7–186.9 folds and 4.25 folds, respectively. The genera of Bacillus and Mycobacterium were the possible bacterial pathogen hosts of ARGs enriched in tetracycline added group. This study suggests that higher concentration of tetracycline residual can modify microbial communities and increase the dissemination risk of ARGs for final sludge vermicompost.
Show more [+] Less [-]Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments Full text
2019
Chen, Chengyu | Wei, Jingyue | Li, Jing | Duan, Zhihui | Huang, Weilin
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10–100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Show more [+] Less [-]