Refine search
Results 391-400 of 6,546
Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China Full text
2020
Zhang, Licheng | An, Ji | Liu, Mengyang | Li, Zhiwei | Liu, Yue | Tao, Lixin | Liu, Xiangtong | Zhang, Feng | Zheng, Deqiang | Gao, Qi | Guo, Xiuhua | Luo, Yanxia
Fine particulate matter (PM₂.₅) pollution has become a worldwide environmental concern because of its adverse impacts on human health. This study aimed to explore the spatiotemporal variations and influencing factors of PM₂.₅ concentrations in Beijing during the 2013–2018 period, and further analyzed the impacts of environmental protection policies implemented in recent years. Notably, this study employed various statistical methods, i.e., ordinary Kriging interpolation, spatial autocorrelation analysis, time-series analysis and the Bonferroni test, to evaluate the regional and seasonal differences of PM₂.₅ concentrations based on long-term monitoring data. The results illustrated that PM₂.₅ concentrations decreased on a yearly basis, demonstrating that air pollution control policies have achieved initial success. Furthermore, PM₂.₅ concentrations were higher in the winter and in the southern regions. Diurnal variation presented a bimodal distribution, which varied slightly with the season. Relative humidity and wind speed were the principal meteorological factors affecting the distribution of PM₂.₅ concentrations, while precipitation had essentially no effect. A high positive correlation between PM₂.₅ and gaseous pollutants (SO₂, NO₂, and CO) indirectly reflected the contribution of automobile exhaust and coal-fired emissions. Generally, PM₂.₅ concentrations demonstrated strong spatiotemporal variations, and meteorological factors and pollutant emissions played an important role in this.
Show more [+] Less [-]Levels of persistent organic pollutants in pine tree components and ambient air Full text
2020
Cindoruk, S Sıddık | Sakin, A Egemen | Tasdemir, Yücel
Pine needles are employed as alternative biomonitoring agents in atmospheric studies. In this study, pine (Pinus Pinea) components (needles and branches) and air samples were collected simultaneously to monitor polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from Gemlik, Turkey between January and December 2016. The relationship between ambient air and pine needles were examined to enlighten the usability of pine components as passive samplers for persistent organic pollutants (POPs) in the Marmara region. Average ∑14PAH concentrations for the ambient air, pine needles, and pine branches were 23.1 ± 18.3 ng/m3, 626 ± 306 ng/g DW and 548 ± 261 ng/g DW respectively. PCB concentrations were 118 ± 74 pg/m3, 7.5 ± 2.1 ng/g DW and 6.8 ± 2.9 ng/g DW and ∑10 OCP concentrations were 122 ± 89 ng/m3,1.3 ± 1.5 ng/g DW and 10.0 ± 3.8 ng/g DW in the same order. Levels of PAHs and PCBs were higher in needles than branches. PAH, PCB and OCP concentrations in pine components tended to decrease with increasing temperatures in spring. PAH compounds with medium and light molecular weighted ones were found to be dominant. On the other hand, the predominant PCB components were the medium-weighted congeners while γ-HCH, Heptachlor endo. Epox. Iso A, endrin aldehyde, and methoxychlor were the dominant OCP species.
Show more [+] Less [-]The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA) Full text
2020
Bahmani, Ramin | Kim, DongGwan | Modareszadeh, Mahsa | Thompson, Drew | Park, Jeong Hoon | Yoo, Hye Hyun | Hwang, Seongbin
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
Show more [+] Less [-]Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique Full text
2020
Lee, Kyun Ho | Kim, Haedong | KuK, Jung Won | Chung, Jae Dong | Park, Sungsu | Kwon, Eilhann E.
A dissolved air flotation (DAF) system is one of the water treatment processes that purifies contaminants through a buoyancy effect by attaching the moiety of micro-bubbles on their free surface. Since the DAF system was first used in the drinking water treatment in the 1960s, it has been recognized as an effective treatment for the water purification process. Most previous works laid great emphasis on the internal flow behaviors of fluid to improve the purification efficiency of the DAF system. Nevertheless, the practical implementation with a pilot plant indeed revealed some technical incompleteness for the DAF system. To circumvent for the technical incompleteness, numerical simulation based on computational fluid dynamics (CFD) has been carried out to understand the in-depth knowledge on internal flow phenomena in the DAF system. However, the standard k-ε turbulence model has been conventionally used in the most studies without any proper consideration process. Accordingly, the objectives of this study were to investigate the major effects on the internal flow behaviors for an efficient numerical simulation of DAF when a different turbulence model and micro-bubble parameters are used. As a result, the present study found that the standard k-ε model would be not proper for the internal flow simulation of the DAF process and a careful consideration would be required for a more accurate prediction. In addition, the present study examined a desirable internal flow pattern with various operating conditions of the micro-bubble. Consequently, the main findings of this study are expected to provide realistic information to related researchers for designing the DAF system with the optimal operating parameters.
Show more [+] Less [-]PM2.5 exposure of various microenvironments in a community: Characteristics and applications Full text
2020
Hsu, Wei-Ting | Chen, Jyh-Larng | Candice Lung, Shih-Chun | Chen, Yu-Cheng
While the measurement of particulate matter (PM) with a diameter of less than 2.5 μm (PM₂.₅) has been conducted for personal exposure assessment, it remains unclear how models that integrate microenvironmental levels with resolved activity and location information predict personal exposure to PM. We comprehensively investigated PM₂.₅ concentrations in various microenvironments and estimated personal exposure stratified by the microenvironment. A variety of microenvironments (>200 places and locations, divided into 23 components according to indoor, outdoor, and transit modes) in a community were selected to characterize PM₂.₅ concentrations. Infiltration factors calculated from microenvironmental/central-site station (M/S) monitoring campaigns with time-activity patterns were used to estimate time-weighted exposure to PM₂.₅ for university students. We evaluated exposures using a four-stage modeling approach and quantified the performance of each component. It was found that the SidePak monitor overestimated the concentration by 3.5 times as compared with the filter-based measurements. Higher mean concentrations of PM₂.₅ were observed in the Taoist temple and night market microenvironments; in contrast, lower concentrations were observed in air-conditioned offices and car microenvironments. While the exposure model incorporating detailed time-location information and infiltration factors achieved the highest prediction (R² = 0.49) of personal exposure to PM₂.₅, the use of indoor, outdoor, and transit components for modeling also generated a consistent result (R² = 0.44).
Show more [+] Less [-]Extensive solar light harvesting by integrating UPCL C-dots with Sn2Ta2O7/SnO2: Highly efficient photocatalytic degradation toward amoxicillin Full text
2020
Le, Shukun | Yang, Weishan | Chen, Gonglai | Yan, Aoyu | Wang, Xiaojing
The carbon dots (C-dots) mediated Sn₂Ta₂O₇/SnO₂ heterostructures with spongy structure were successfully assembled by simple hydrothermal route. The photocatalytic removal efficiency of amoxicillin (AMX, 20 mg L⁻¹) over C-dots/Sn₂Ta₂O₇/SnO₂ was estimated to reach up 88.3% within 120 min simulated solar light irradiating. Meanwhile, the HPLC-MS/MS analysis and density functional theory (DFT) computation were examined to clarify the photo-degradation pathway of AMX. The mechanism investigation proposed that with the modification of C-dots, the photocatalysts improves the utilization of solar energy by harvesting the long wavelength solar light due to their unique up-converted photoluminescence (UCPL). In addition, the porous spongy structure and plenty of tiny C-dots promote the ability of adsorption by enlarged specific surface area. Furthermore, the C-dots mediated Z-type heterojunction of Sn₂Ta₂O₇/SnO₂ facilitates the efficient separation and transfer of photo-induced carriers. Our work affords a promising approach for the design of the high-efficient photocatalysts to remedy poisonous antibiotics in aqueous environment.
Show more [+] Less [-]Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives Full text
2020
Sowani, Harshada | Kulkarni, Mohan | Zinjarde, Smita
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m⁻¹ after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
Show more [+] Less [-]Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases Full text
2020
Liu, Yong-Zhe | Pan, Li-Hua | Bai, Yu | Yang, Kun | Dong, Pei-Pei | Fang, Zhong-Ze
PFASs are highly persistent in both natural and living environment, and pose a significant risk for wildlife and human beings. The present study was carried out to determine the inhibitory behaviours of fourteen PFASs on metabolic activity of two major isoforms of carboxylesterases (CES). The probe substrates 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) for CES1 and fluorescein diacetate (FD) for CES2 were utilized to determine the inhibitory potentials of PFASs on CES in vitro. The results demonstrated that perfluorododecanoic acid (PFDoA), perfluorotetradecanoic acid (PFTA) and perfluorooctadecanoic acid (PFOcDA) strongly inhibited CES1 and CES2. The half inhibition concentration (IC₅₀) value of PFDoA, PFTA and PFOcDA for CES1 inhibition was 10.6 μM, 13.4 μM and 12.6 μM, respectively. The IC₅₀ for the inhibition of PFDoA, PFTA and PFOcDA towards CES2 were calculated to be 9.56 μM, 17.2 μM and 8.73 μM, respectively. PFDoA, PFTA and PFOcDA exhibited noncompetitive inhibition towards both CES1 and CES2. The inhibition kinetics parameters (Kᵢ) were 27.7 μM, 26.9 μM, 11.9 μM, 4.04 μM, 29.1 μM, 27.4 μM for PFDoA-CES1, PFTA-CES1, PFOcDA-CES1, PFDoA-CES2, PFTA-CES2, PFOcDA-CES2, respectively. In vitro-in vivo extrapolation (IVIVE) predicted that when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 2.77 μM, 2.69 μM and 1.19 μM, respectively, it might interfere with the metabolic reaction catalyzed by CES1 in vivo; when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 0.40 μM, 2.91 μM, 2.74 μM, it might interfere with the metabolic reaction catalyzed by CES2 in vivo. Molecular docking was used to explore the interactions between PFASs and CES. In conclusion, PFASs were found to cause inhibitory effects on CES in vitro, and this finding would provide an important experimental basis for further in vivo testing of PFASs focused on CES inhibition endpoints.
Show more [+] Less [-]Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland Full text
2020
Kotowska, Urszula | Kapelewska, Justyna | Sawczuk, Róża
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Show more [+] Less [-]Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression Full text
2020
Yang, Qian | Yuan, Qiangqiang | Yue, Linwei | Li, Tongwen
PM₂.₅ pollution is caused by multiple factors and determining how these factors affect PM₂.₅ pollution is important for haze control. In this study, we modified the geographically weighted regression (GWR) model and investigated the relationships between PM₂.₅ and its influencing factors. Experiments covering 368 cities and 9 urban agglomerations were conducted in China in 2015 and more than 20 factors were considered. The modified GWR coefficients (MGCs) were calculated for six variables, including two emission factors (SO₂ and NO₂ concentrations), two meteorological factors (relative humidity and lifted index), and two topographical factors (woodland percentage and elevation). Then the spatial distribution of MGCs was analyzed at city, cluster, and region scales. Results showed that the relationships between PM₂.₅ and the different factors varied with location. SO₂ emission positively affected PM₂.₅, and the impact was the strongest in the Beijing–Tianjin–Hebei (BTH) region. The impact of NO₂ was generally smaller than that of SO₂ and could be important in coastal areas. The impact of meteorological factors on PM₂.₅ was complicated in terms of spatial variations, with relative humidity and lifted index exerting a strong positive impact on PM₂.₅ in Pearl River Delta and Central China, respectively. Woodland percentage mainly influenced PM₂.₅ in regions of or near deserts, and elevation was important in BTH and Sichuan. The findings of this study can improve our understanding of haze formation and provide useful information for policy-making.
Show more [+] Less [-]