Refine search
Results 41-50 of 436
Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US
2007
Pardo, L.H. | McNulty, S.G. | Boggs, J.L. | Duke, S.
Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, δ15N of foliage and soil also increases. We measured foliar δ15N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar δ15N increased from -5.2 to -0.7[per thousand] with increasing N deposition from Maine to NY. Foliar δ15N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar δ15N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988. Foliar δ15N increased with increasing N deposition from Maine to NY, but decreased between 1987-1988 and 1999
Show more [+] Less [-]Toward a biologically significant and usable standard for ozone that will also protect plants
2007
Paoletti, E. | Manning, W.J.
Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O3 flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. Current standards do not protect vegetation from ozone, but progress is being made.
Show more [+] Less [-]Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe
2007
Baborowski, M. | Büttner, O. | Morgenstern, P. | Krüger, F. | Lobe, I. | Rupp, H. | Tumpling, W.V.
Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. The deposition of polluted sediments on floodplains is characterised by a high local variability.
Show more [+] Less [-]Agricultural opportunities to mitigate greenhouse gas emissions
2007
Johnson, J.M.F. | Franzluebbers, A.J. | Weyers, S.L. | Reicosky, D.C.
Agriculture is a source for three primary greenhouse gases (GHGs): CO2, CH4, and N2O. It can also be a sink for CO2 through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH4 consumption. Managing N to match crop needs can reduce N2O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH4 and N2O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint. Management options can be used to reduce agriculture's environmental impacts.
Show more [+] Less [-]Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.)
2007
Wittmann, C. | Matyssek, R. | Pfanz, H. | Humar, M.
Effects of ozone impact on gas exchange and chlorophyll fluorescence of juvenile birch (Betula pendula) stems and leaves were investigated. Significant differences in the response of leaves and stems to ozone were found. In leaves, O3 exposure led to a significant decline in photosynthetic rates, whereas stems revealed an increased dark respiration and a concomitant increase in corticular photosynthesis. In contrast to birch leaves, corticular photosynthesis appeared to support the carbon balance of stems or even of the whole-tree under O3 stress. The differences in the ozone-response between leaves and stems were found to be related to ozone uptake rates, and thus to inherent differences in leaf and stem O3 conductance. Leaves of birch were more affected by ozone fumigation than corresponding stems, due to a higher ozone uptake rate.
Show more [+] Less [-]Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes
2007
Shen, Z. | Chen, X. | Jia, J. | Qu, L. | Wang, W.
During the cation exchange membrane (CEM) enhanced electrokinetic (EK) soil remediation, the nearer to the anode, the higher are the H+ concentrations and the redox potentials. As both low pH and high redox potential are helpful to speedup Cd electro-migration, soils near the anode can be quickly remedied. Usually EK process is operated with one fixed anode (FA). A novel CEM enhanced EK method with approaching anodes (AAs) is proposed to accelerate electro-migration effect. Several mesh Ti/Ru anodes were inserted as AAs in the treated soil. They were switched in turn from the anode towards the cathode. Thus high H+ ions concentrations and high redox potentials quickly migrate to the cathode. Consequently, soil remediation is accelerated and nearly 44% of energy and 40% of time can be saved. The mechanism of Cd electro-migration behavior in soils during CEM enhanced EK is described as the elution in an electrokinetically driven chromatogram. During electrokinetic remediation, the nearer to the anode, the higher are the Cd removal velocities. A novel method with approaching anodes is proposed to accelerate remediation effect.
Show more [+] Less [-]Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe
2007
Hsu, P. | Matthai, A. | Heise, S. | Ahlf, W.
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation. Significant impacts of hydrological and biological factors on the ecotoxicological quality in two European rivers (Elbe and Dommel).
Show more [+] Less [-]Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils
2007
Fang, Joong | Wen, B. | Shan, X.Q. | Lin, J.M. | Owens, G.
Previously recommended rhizosphere-based method (RHIZO) applied to moist rhizosphere soils was integrated with moist bulk soils, and termed adjusted-RHIZO method (A-RHIZO). The A-RHIZO and RHIZO methods were systematically compared with EDTA, DTPA, CaCl2 and the first step of the Community Bureau of Reference (BCR1) methods for assessing metal phytoavailability under field conditions. Results suggested that moist bulk soils are equally suited or even better than rhizosphere soils to estimate metal phytoavailability. The A-RHIZO method was preferred to other methods for predicting the phytoavailability of Ni, Cu, Zn, Cd, Pb and Mn to wheat roots with correlation coefficients of 0.730 (P < 0.001), 0.854 (P < 0.001), 0.887 (P < 0.001), 0.739 (P < 0.001), 0.725 (P < 0.001) and 0.469 (P < 0.05), respectively. When including soil properties, other extraction methods were also able to predict phytoavailability reasonably well for some metals. Soil pH, organic matter and Fe-Mn oxide contents, and cation-exchange capacity mostly influenced the extraction and phytoavailability of metals. An adjusted-RHIZO method was the most promising approach for predicting metal phytoavailability to wheat under field conditions.
Show more [+] Less [-]Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel
2007
Augustyniak, M. | Migula, P. | Mesjasz-Przybylowicz, J. | Tarnawska, M. | Nakonieczny, M. | Babczynska, A. | Przybylowicz, W. | Augustyniak, M.G.
Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides.
Show more [+] Less [-]Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)
2007
Burger, C.M. | Kolditz, O. | Fowler, H.J. | Blenkinsop, S.
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system. Future climate change and data-based rainfall-runoff predictions are presented for the Upper Gallego.
Show more [+] Less [-]