Refine search
Results 411-420 of 7,995
Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure Full text
2021
Nguyen, Tan-Duc | Itayama, Tomoaki | Ramaraj, Rameshprabu | Iwami, Norio | Shimizu, Kazuya | Dao, Thanh-Son | Phạm, Thanh Lưu | Maseda, Hideaki
Ciprofloxacin (CFX) and ofloxacin (OFX) are two of the most often used fluoroquinolone antibiotics, and their residues are found in large amounts in various aquatic settings. However, the toxicity tests of CFX using eukaryotic organisms such as Daphnia magna are inadequate, and the test result of OFX is currently unknown. Therefore, the chronic toxicity test for D. magna was performed during 42 days under exposure to CFX and OFX concentrations of 50, 500, and 5000 μg L⁻¹. All exposure conditions did not cause mortality for D. magna. CFX exposure at 500 μg L⁻¹ resulted in an earlier oogenesis date and increased brood size in the second birth. The Poisson-based generalized linear mixed-effects model revealed that the reduction of fertility was statistically significant for the CFX and OFX exposures at 5000 μg L⁻¹. On the other hand, the production of dead eggs as offspring degradation was also found significantly as maternal D. magna exposed to antibiotics at 5000 μg L⁻¹. In addition, following long-term exposure to antibiotics, maternal adaptation to antibiotics was established for offspring deterioration and fertility. However, the OFX exposure showed that the fertility-suppressed effects continued for a longer period than the CFX exposure. Although no rational explanation has yet been given for the more substantial effect of OFX on reducing fertility than CFX, molecular cell biology and symbiotic microbial flora derived from previous studies could explain our ecotoxicological results. This study is the first report for the OFX chronic toxicities on D. magna by comparing it to the toxicity of CFX. Our study contributes to guiding the future impact assessment of fluoroquinolone antibiotic pollution on ecosystems, including the need for new statistical methods in ecotoxicological studies.
Show more [+] Less [-]Algae-induced photodegradation of antibiotics: A review Full text
2021
Wei, Lianxue | Li, Haixiao | Lü, Jinfeng
Antibiotics are a typical group of pharmaceutical and personal care products (PPCPs) with emerging pollutant effects. The presence of residual antibiotics in the environment is a prominent issue owing to their potential hazards, toxic effects, and persistence. Several treatments have been carried out in aquatic environments in order to eliminate antibiotic residues. Among these, photodegradation is regarded as an environmentally-friendly and efficient option. Indirect photodegradation is the main pathway for the degradation of residual antibiotics in natural water, as opposed to direct photodegradation. Algae, working as photosensitizers, play an important role in the indirect photolysis of residual antibiotics in natural water bodies. They promote this reaction by secreting extracellular organic matters (EOMs) and inducing the generation of active species. In order to provide a thorough understanding of the effects of algae on residual antibiotic degradation in the environment, this paper comprehensively reviews the latest research regarding algae-induced antibiotic photodegradation. The summary of the different pathways and photosensitive mechanisms involved in this process show that EOMs are indispensable to antibiotic photodegradation. The influencing factors of algae-induced photodegradation are also discussed here: these include algae species, antibiotic types, and environmental variables such as light source, ferric ion presence, temperature, and ultrasound treatment. Based on the review of existing literature, this paper also considers several pathways for the future study of algae-induced antibiotic photodegradation.
Show more [+] Less [-]Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions Full text
2021
Numpilai, Thanapha | Cheng, Chin Kui | Seubsai, Anusorn | Faungnawakij, Kajornsak | Limtrakul, Jumras | Witoon, Thongthai
Recycling of waste glycerol derived from biodiesel production to high value-added chemicals is essential for sustainable development of Bio-Circular-Green Economy. This work studied the conversion of glycerol to 1,3-propanediol over Pt/WOₓ/Al₂O₃ catalysts, pointing out the impacts of catalyst pore sizes and operating conditions for maximizing the yield of 1,3-propanediol. The results suggested that both pore confinement effect and number of available reactive metals as well as operating conditions determined the glycerol conversion and 1,3-propanediol selectivity. The small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst (6.1 nm) gave a higher Pt dispersion (32.0%), a smaller Pt crystallite size (3.5 nm) and a higher number of acidity (0.47 mmol NH₃ g⁻¹) compared to those of the large-pore 5Pt/WOₓ/L-Al₂O₃ catalyst (40.3 nm). However, glycerol conversion and 1,3-propanediol yield over the small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst were significantly lower than those of the large-pore Pt/WOₓ/L-Al₂O₃ catalyst, suggesting that the diffusional restriction within the small-pore catalyst suppressed transportation of molecules to expose catalytic active sites, favoring the excessive hydrogenolysis of 1,3-propanediol, giving rise to undesirable products. The best 1,3-propanediol yield of 32.8% at 78% glycerol conversion were achieved over the 5Pt/WOₓ/L-Al₂O₃ under optimal reaction condition of 220 °C, 6 MPa, 5 h reaction time and amount of catalyst to glycerol ratio of 0.25 g mL⁻¹. However, the 1,3-propanediol yield and glycerol conversion decreased to 19.6% and 51% after the 4th reaction-regeneration which were attributed to the carbonaceous deposition and the agglomeration of Pt particles.
Show more [+] Less [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress Full text
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
Show more [+] Less [-]Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy Full text
2021
Ham, Jiyeon | Lim, Whasun | Song, Gwonhwa
Pendimethalin (PDM) is a dinitroaniline crop pesticide that is extensively utilized worldwide. However, the reproductive toxicity and cellular mechanisms of PDM have not been identified. Therefore, we elucidated the adverse effects of PDM on the reproductive system using mouse testicular Leydig and Sertoli cells (TM3 and TM4 cells, respectively). Our results demonstrated that PDM suppressed the viability and proliferation of TM3 and TM4 cells. Additionally, PDM induced cytosolic calcium upregulation and permeabilization of mitochondrial membrane potential in both TM3 and TM4 cells. We also verified that PDM activates the endoplasmic reticulum (ER) stress pathway and autophagy. Furthermore, we confirmed that activation of ER stress and autophagy were blocked by 2-aminoethoxydiphenyl borate (2-APB) treatment. Finally, we confirmed PDM-induced cell cycle arrest and apoptosis in TM3 and TM4 cells. Thus, we first demonstrated that PDM impedes the survival of testis cells, and further, their function.
Show more [+] Less [-]Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio) Full text
2021
Jia, Rui | Du, Jinliang | Cao, Liping | Feng, Wenrong | He, Qin | Xu, Pao | Yin, Guojun
Hydrogen peroxide (H₂O₂), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H₂O₂ for gills and liver of fish has received attention from many researchers. However, whether H₂O₂ exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H₂O₂ toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H₂O₂ for 1 h per day lasting 14 days. The results showed that H₂O₂ exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD⁺) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). Meanwhile, H₂O₂ exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H₂O₂ exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H₂O₂ exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H₂O₂ exposure. In conclusion, our data indicated that H₂O₂ exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H₂O₂ toxicity in aquatic animal, and contributed to proper application of H₂O₂ in aquaculture.
Show more [+] Less [-]Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico Full text
2021
Lozano-Hernández, Eduardo Antonio | Ramírez-Álvarez, Nancy | Rios Mendoza, Lorena Margarita | Macías-Zamora, José Vinicio | Sánchez-Osorio, José Luis | Hernández-Guzmán, Félix Augusto
As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via μ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.
Show more [+] Less [-]The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus Full text
2021
Ren, Xianyun | Xu, Yao | Yu, Zhenxing | Mu, Cuimin | Liu, Ping | Li, Jian
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g⁻¹ body weight (b.w.) or sulforaphane (SFN) at 5 μg g⁻¹ b.w., and then were exposed to 40 mg L⁻¹ CdCl₂ for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Show more [+] Less [-]Episodes of high tropospheric ozone reduce nodulation, seed production and quality in soybean (Glycine max (L.) merr.) on low fertility soils Full text
2021
Biancari, Lucio | Cerrotta, Clara | Menéndez, Analía I. | Gundel, Pedro E. | Martínez-Ghersa, M Alejandra
Driven by human activities, air pollution and soil degradation are threatening food production systems. Rising ozone in the troposphere can affect several physiological processes in plants and their interaction with symbiotic microorganisms. Plant responses to ozone may depend on both soil fertility and the ontogenetic stage in which they are exposed. In this work, we studied the effects of ozone episodes and soil fertility on soybean plants. We analysed soybean plant responses in the production of aboveground and belowground biomass, structural and functional attributes of rhizobia, and seed production and quality. The experiment was performed with plants grown in two substrates with different fertility (commercial soil, and soil diluted (50%, v/v) with sand). Plants were exposed to acute episodes of ozone during vegetative and reproductive stages. We observed that ozone significantly reduced belowground biomass (≈25%), nodule biomass (≈30%), and biological nitrogen fixation (≈21%). Plants exposed to ozone during reproductive stage growing in soil with reduced fertility had lower seed production (≈10% lower) and seed protein (≈12% lower). These responses on yield and quality can be explained by the observed changes in belowground biomass and nitrogen fixation. The negative impact of ozone on the symbiotic interaction with rhizobia, seed production and quality in soybean plants were greater in soils with reduced fertility. Our results indicate that food security could be at risk in the future if trends in ozone concentration and soil degradation processes continue to increase.
Show more [+] Less [-]Urinary metabolites of polycyclic aromatic hydrocarbons after short-term fine particulate matter exposure: A randomized crossover trial of air filtration Full text
2021
Shi, Jiazhang | Zhao, Yan | Xue, Lijun | Li, Guoxing | Wu, Ziyuan | Guo, Xinbiao | Wang, Bin | Huang, Jing
Research on the relationship between short-term exposure to fine particulate matter (PM₂.₅) and urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) is sparse in the nonoccupationally exposed populations. A quasi-experimental observation of haze events nested within a randomized crossover trial of alternative 1-week real or sham indoor air filtration was conducted to evaluate the associations of urinary monohydroxy-PAHs (OH-PAHs) with short-term exposure to PM₂.₅ and PM₂.₅-bound PAHs. The study was conducted among 57 healthy college students in Beijing, China. PM₂.₅-bound PAHs and urinary OH-PAHs were quantified using gas chromatography coupled with a triple-quadrupole tandem mass spectrometer. Linear mixed-effect models were applied to evaluate the association of urinary OH-PAHs with time-weighted personal PM₂.₅ and PM₂.₅-bound PAHs, controlling for potentially confounding variables. The results demonstrated that air filtration could markedly reduce external exposure to PM₂.₅ and PM₂.₅-bound parent, nitrated, and oxygenated PAHs. In the intervention trial, the urinary concentrations of 2-hydroxyfluorene (2-OH-FLU) and 9-hydroxyphenanthrene (9-OH-PHE) were elevated significantly by 16.5% (95% CI, 2.1%, 33.1%) and 37.9% (95% CI, 8.4%, 75.4%), respectively, in association with a doubling increase in personal PM₂.₅ exposure. Urinary 9-OH-PHE was also significantly positively associated with the increase in the sum of PM₂.₅-bound parent PAHs. Furthermore, the levels of urinary OH-PAHs such as 2-OH-FLU and 9-OH-PHE in the haze events were elevated by 31.1% (95% CI, 8.7%, 53.4%) and 73.5% (95% CI, 16.0%, 131.0%), respectively, in association with a doubling increase in personal PM₂.₅ exposure. The findings indicated that urinary 2-OH-FLU and 9-OH-PHE could serve as potential internal exposure biomarkers for assessing short-term PM₂.₅ exposure in nonoccupational populations.
Show more [+] Less [-]