Refine search
Results 4211-4220 of 7,292
Persistence of Fecal Indicators and Microbial Source Tracking Markers in Water Flushed from Riverbank Soils Full text
2022
Calderon, Jose S. | Verbyla, Matthew E. | Gil, Mia | Pinongcos, Federick | Kinoshita, Alicia M. | Mladenov, Natalie
Sewer overflows and exfiltration can potentially contaminate water bodies with pathogens from wastewater. Microbial source tracking (MST) methods such as the detection of the HF183 gene target of Bacteroides have been proposed to monitor human fecal pollution inputs to surface waters; however, the persistence of HF183 and other MST markers in water flushed from soils after contamination events is not well understood. In this study, the persistence and decay of two culture-based fecal indicators, Escherichia coli and enterococci, and two molecular MST markers, HF183 and pepper mild mottle virus (PMMoV), were evaluated in riverbank soils spiked with untreated sewage, which were left idle for 1, 14, 28, 60, and 121 days under dark conditions and then flushed with synthetic rainwater. All four microbial indicators were still detected in flush water 4 months after the soil was contaminated. PMMoV persisted much longer and had a slower decay rate than the other microbial indicators, and E. coli degraded most rapidly. In consecutive flushing experiments with fresh (1 day) sewage-spiked soils, HF183, E. coli, and enterococci were all detected after 20 consecutive flushes with rainwater, but PMMoV was not detected after the fifth flush. Our findings indicate that water (e.g., stormwater interflow) flushing through riverbank soils that have previously been contaminated by sewer overflows or sewer exfiltration can potentially be a source of microbial pollution to surface waters, even for several months after the contamination occurs. Results from this study also demonstrate the benefits of using multiple human-associated fecal indicators to distinguish pollution from different microbial groups in water bodies.
Show more [+] Less [-]Comparative study of double-slope solar still, hemispherical solar still, and tubular solar still using Al2O3/water film cooling: a numerical study and CO2 mitigation analysis [Erratum: September 2022, v.29(43), p.65370] Full text
2022
Shoeibi, Shahin | Ali Agha Mirjalily, Seyed | Kargarsharifabad, Hadi | Panchal, Hitesh | Dhivagar, Ramasamy
Solar still, as one of the important devices for generating water using renewable energy, has been widely used in arid as well as coastal areas where access to fresh water is limited. This paper uses CFD simulation to compare double-slope solar still, hemispherical solar still, and tubular solar still using nanofluid film cooling. Al₂O₃-water nanofluids with a concentration of 0.1% are used due to facilitate sunlight penetration into the absorber plate inside the solar desalination. It is assumed the flow is steady, laminar, and air is an ideal and incompressible gas. The simple algorithm is considered to calculate the relationship between pressure and velocity and to separate the transfer and pressure interpolation terms from the appropriate upstream designs. Also, the economic, exergoeconomic, and CO₂ mitigation parameters of various solar stills were investigated. The study revealed that the water productivity of double-slope solar desalination using nanofluids film cooling is improved by about 4.8% compared with tubular solar desalination with nanofluid film cooling. Also, the lowest CPL of 0.0362 $/L was obtained in the double-slope solar desalination using nanofluid film cooling. The net CO₂ mitigation of 14.08 tons, 13.72 tons, and 13.44 tons was obtained for double-slope solar desalination, hemispherical solar desalination, and tubular solar desalination, respectively.
Show more [+] Less [-]Estimation of thermal hazards in surrounding rock of subway tunnel under dual periodic temperature boundaries: a case study Full text
2022
Liu, Wei | Liang, Shufei | Huang, Qingwei | Qin, Yueping
Thermal hazards of the surrounding rock of subway tunnels are becoming apparent, in which the heat transfer in the surrounding rock plays a crucial role. Due to the shallow buried depth, the subway tunnel encounters a more complicated heat exchange under the duplicate effects of periodic temperature fluctuation of ground atmosphere and periodic temperature variation of tunnel wind, but this issue has not been fully addressed. In this work, a transient heat transfer model of tunnel surrounding rock based on dual periodic temperature boundaries was established. A solver was developed to estimate the temperature rise and heat transfer of surrounding rock. The correctness of this model was then verified by comparing with previous empirical values and semi-empirical equations. The results show that the temperatures of the surrounding rock at different depths still fluctuate following the simple harmonic waves, and there are some regions that are heavily affected by the duplicate effects, such as the overlying strata of the tunnel. The surrounding rock generally exhibits heat storage in annual cycle, but the total heat storage decreases year by year until it tends to stabilize. Furthermore, the shallower the tunnel is buried, the greater the influence of ground temperature and the higher the temperature rise in the tunnel surrounding rock. This research provides an alternative approach to determine the heat storage of tunnel surrounding rock and evaluates the process of thermal disaster manifestation of subway.
Show more [+] Less [-]Microcystins can be extracted from Microcystis aeruginosa using amino acid-derived biosurfactants Full text
2022
Lima, Tatiani Brenelli | Silva-Stenico, Maria Estela | Fiore, Marli F. | Etchegaray, Augusto
Microcystin, a cyanotoxin produced by Microcystis aeruginosa growing in eutrophic waters, can promote liver tumors in people ingesting contaminated water. To date, water treatment systems have not been effective in removing or degrading these cyanotoxins. In this work, we investigated the inhibitory activity of surfactants on the growth of M. aeruginosa and their application to extract the intracellular produced cyanotoxins. The experiments involving growth inhibition and extraction of cyanotoxins were carried out using the non-biodegradable surfactant cetyl trimethyl ammonium bromide (CTAB) in addition to other biodegradable surfactants. These were Tween 80 and surfactants derived from amino acids and peptides, respectively, from arginine, SDA, and hydrolyzed peptone, SDP. We demonstrated that the tested surfactants could be used to inhibit the growth of M. aeruginosa. At this point, CTAB and SDA proved to be the most competent surfactants in reducing cyanobacterial growth. Moreover, microcystins have been successfully removed from the water employing a cloud point extraction protocol based on the use of these surfactants and ammonium sulfate.
Show more [+] Less [-]Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India Full text
2022
Singh, Pawan Kumar | Pandey, Alok Kumar | Ahuja, Sahil | Kiran, Ravi
This paper compares four prediction methods, namely random forest regressor (RFR), SARIMAX, Holt-Winters (H-W), and the support vector regression (SVR), to forecast the total CO2 emission from the paddy crop in India. The major objective of this study is to compare these four models and suggest an effective model for the prediction of total CO2 emission. Data from 1961 to 2018 has been categorised into two parts: training and test data. The study forecasts total CO2 emission from paddy crops in India from 2019 to 2025. A comparison of mean absolute percentage error (MAPE) and the mean square error (MSE) highlights the differences in accuracy among the four models. The mean absolute percentage eror (MAPE) and the mean square error (MSE) for the four methods are RFR (MAPE: 5.67; MSE: 549,900.02), SARIMAX (MAPE: 1.67; MSE:70,422.35), H-W (MAPE:0.75; MSE:16,648.58), and SVR (MAPE: 0.91; MSE: 17,832.4). The values of MAPE and MSE with the Holt-Winters (H-W) and the support vector regression (SVR) are relatively low as compared to SARIMAX and RFR. Based on these results, it can be inferred that H-W and SVR were found suitable models to forecast the total CO2 emission from paddy crops. Holt-Winters model predicted 14,364.97 for the year 2025, and SVR predicted 13,696.67 for the year 2025. The decision-maker can use these predictions to build a suitable policy for the future. This approach can be contrasted with other forecasting methods, such as the neural network, and train the model to achieve better forecast accuracy.
Show more [+] Less [-]Environmental friendly micro cold storage for last-mile Covid-19 vaccine logistics Full text
2022
Nadimuthu, Lalith Pankaj Raj | Victor, Kirubakaran
Globally, vaccination plays a vital role in controlling the Covid-19 pandemic. However, the cold supply chain is essential for vaccine storage and logistics services. In a country like India, the last-mile logistics of vaccines is a challenging task. The cold chain is indispensable for the Covid-19 vaccine drive to the rural areas. The demand for cold storage increases rapidly due to the rapid Covid-19 vaccine drive. The conventional cold storage facility has a more significant threat to the grid power quality and environmental impacts. The energy demand and greenhouse gas emission of traditional cold storage lead to global warming. The micro cold storage facility has to be developed rapidly to accelerate the vaccine drive to the last mile of the county with reliable and affordable energy sources. In addition, climate change mitigation is ensured by the renewable energy utilization in the Covid-19 vaccine drive. The proposed novel micro cold storage aims to be silent, clean, mobile, without moving parts, and reliable for the last-mile vaccine logistics as a vaccine carrier to the remote rural areas. This paper deals with the novel design, development, and experimental investigation of solar photovoltaic powered thermoelectric-based micro cold storage as a Covid-19 vaccine carrier for rural areas. The design consideration of Covid-19 vaccine storage has been reported. The experimental results ensure the World Health Organization recommended vaccine storage (i.e., vaccine carrier) temperature range of +2 to +8 °C. Therefore, green energy and refrigeration system provide environmental sustainability by mitigating 700kg of annual carbon emission.
Show more [+] Less [-]Nonlinear dependence between China’s carbon market and stock market: new evidence from quantile coherency and causality-in-quantiles Full text
2022
Jiang, Yonghong | Liu, Lu | Mu, Jinqi
This study examines the nonlinear dependence between carbon market and stock market in China under normal and extreme market conditions by employing two novel nonlinear approaches, namely, quantile coherency and causality-in-quantiles methods. Given our results on the overall and sector level of stock market, we find that there is a negative dependence between the two markets under bearish and normal market states in the short- and medium-term respectively, while the dependence becomes positive under bearish and bullish market states in the long-term. Furthermore, we also prove that the Granger causality from carbon market to stock market exists. However, no evident impacts from stock market to carbon market have been found. Additionally, at sector stock market, we discover heterogeneity across market conditions. And emission-intensive sector stock indices are more affected by carbon prices.
Show more [+] Less [-]Environmental concerns of financial inclusion and economic policy uncertainty in the era of globalization: evidence from low & high globalized OECD economies Full text
2022
Ullah, Sami | Ali, Kishwar | Shah, Salman Ali | Ehsan, Muhammad
Environmental consequences of financial aspects, policy uncertainties and rapid globalization is the topic of intense debate in present years. However, this study contribute to existing literature in an innovative way. We classified the 33 OECD economies in two group’s lower globalized economies (LGE) and highly globalized economies (HGE), based on their level of globalization. Considering the cross-sectional dependency and slope heterogeneity in the data this study employed the Augmented Mean Group method to estimate the influence of financial inclusion, economic policy uncertainty and globalization on the environment quality of both groups for the period 1996–2019. The results revealed a negative significant impact of financial inclusion, while a positive significant impact of economic policy uncertainty on CO2 emissions in both groups, LGE and HGE. However the globalization estimated to have positive impact on CO2 emission in LGE’s, in HGE’s it is significantly impeding the CO2 emission. The interaction of globalization with financial inclusion and economic policy uncertainty respectively found negative and positive to effect the CO2 in both LGE’s and HGE’s. The study suggests that, LGE’s are need to prepare for economic globalization, move toward adopting energy-efficient technology and promote trade in less-polluting products in order to sustain their environment quality. The outcomes of this study are robust by employing different model specifications.
Show more [+] Less [-]Quantifying the bioaccumulation of Pb to Chlorella vulgaris in the presence of dissolved organic matters with different molecular weights Full text
2022
Shi, Zhiqiang | Du, Haiyan | Wang, Changhui | Xu, Huacheng
Dissolved organic matter (DOM) is ubiquitous in natural waters which exhibits obvious effects on the toxicity of heavy metals. However, information on the toxicity of heavy metals in the presence of DOMs with different molecular weights (MWs) was still unclear. In this study, Suwannee river humic acid (SRHA) and algae-derived organic matter (ADOM) were selected as typical terrestrial and microbial DOMs, with the bulk DOMs fractionating into high MW (HMW-, 1 kDa ~ 0.45 μm) and low MW (LMW-, < 1 kDa) fractions to explore the MW-dependent heterogeneities in the bioaccumulation of Pb to Chlorella vulgaris. Results showed that, regardless of DOM types, the LMW fraction exhibited more acidic groups and humic-like substances than the HMW counterparts. Presence of bulk DOM can decrease the bioaccumulation of Pb, while the specific effects were MW- and type-dependent. The LMW-SRHA enhanced the bioaccumulation of Pb while the HMW counterpart alleviated the effects. However, both the HMW- and LMW-ADOM can reduce the bioaccumulation of Pb to C. vulgaris. Moreover, the correlation analysis showed a significant positive correlation between the content of phenolic-OH and the adsorbed/internalized amounts of Pb, demonstrating that the phenolic-OH played a critical role in altering the bioaccumulation of Pb. The results obtained in this study suggest that distribution of MWs, number of acidic functional groups, and metal complexation capacity within DOM pool should be considered for the eco-environmental risk assessment of heavy metals in aquatic environments.
Show more [+] Less [-]Exogenous supplementation of Sulfur (S) and Reduced Glutathione (GSH) Alleviates Arsenic Toxicity in Shoots of Isatis cappadocica Desv and Erysimum allionii L Full text
2022
Arianmehr, Mitra | Karimi, Naser | Souri, Zahra
The current study was conducted to investigate the role of sulfur (S) and reduced glutathione (GSH) in mitigating arsenic (As) toxicity in Isatis cappadocica and Erysimum allionii. These plants were exposed for 3 weeks to different concentrations (0, 400 and 800 μM) of As to measure fresh weight, total chlorophyll, proline and hydrogen peroxide (H₂O₂) content, As and S accumulation, and guaiacol peroxidase (POD) and glutathione S-transferase (GST) along with the supplementation of 20 mg L⁻¹ of S and 500 μM of GSH. Results revealed the significant reduction of fresh weight (especially in E. allionii), activities of POD and GST enzymes and proline content as compare to control. However, the application of S and GSH enhanced the fresh weight. Inhibition in H₂O₂ accumulation and improvement in antioxidant responses were measured with the application of S and GSH. Hence, the supplementation of S and GSH enhanced fresh weight and total chlorophyll in both I. cappadocica and E. allionii by alleviating the adverse effects of As stress via decreased H₂O₂ content and restricted As uptake.
Show more [+] Less [-]