Refine search
Results 4281-4290 of 4,937
The mediated role of complement C3 in PM2.5 exposure and type 2 diabetes mellitus: an elderly panel study in Beijing, China Full text
2019
Tong, Yuanren | Bai, Lu | Luo, Kai | Zhao, Meiduo | Xu, Jing | Li, Ang | Li, Runkui | Yang, Mingan | Xu, Qun
Diabetes mellitus (DM) is a common chronic disease worldwide. Ambient air pollution has long been proven to be associated with type 2 diabetes mellitus (T2DM) progression, but the underlying mechanism is not clear yet. In addition, previous studies mainly focused on the prevention of healthy people against the incidence of T2DM. We designed a panel study including two follow-ups and enrolled 39 patients with T2DM living in Beijing. Linear mixed model was fitted to assess the association between two pairs of variables (ambient air pollution exposure and C3 levels, ambient air pollution exposures and T2DM index). Mediation analysis of C3 between ambient air pollution exposure and indicators of T2DM progression was conducted. We found that PM2.5 exposures is are negatively associated with serum complement C3. Given that C3 might act as a protector of pancreas β cell, PM2.5 exposures could accelerate disease in T2DM populations. No mediation effects were found. This study reveals that exposures to PM2.5 can cause progression of diseases among T2DM populations.
Show more [+] Less [-]Fingerprinting sub-basin spatial suspended sediment sources by combining geochemical tracers and weathering indices Full text
2019
Nosrati, Kazem | Fathi, Zeynab | Collins, Adrian L.
Transport and deposition of fine-grained sediment, a pervasive nonpoint source pollutant, cause deleterious off-site impacts for water quality and aquatic ecosystems. Sediment fingerprinting provides one means of identifying the spatial sources of mobilised sediment delivered to fluvial systems in order to help target sediment control strategies and uptake of such source tracing procedures has been steadily increasing. Nonetheless, there remains a need to continue testing and comparing different composite signatures for source discrimination including the incorporation of physically grounded information relevant to erosion patterns. Accordingly, the objective of this study was to compare the discrimination and apportionment of sub-basin spatial suspended sediment sources in a mountainous basin in northern Tehran, Iran, using composite signatures comprising conventional geochemical tracers combined with lithological weathering indices or only the former. The list of conventional geochemical properties comprised Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Sr, Ti, and Zn whilst three weathering indices were included: the chemical index of alteration (CIA), the weathering index of Parker (WIP), and the indicator of recycling (IR) which were all calculated based on elemental oxides. Using a composite signature combining conventional geochemical tracers and one weathering index (IR), the relative contributions from the sub-basin spatial sources were estimated at 1 (Imamzadeh Davood; 1.4%), 2 (Taloon; 13.4%), 3 (Soleghan; 35.9%), and 4 (Keshar; 48.4%) compared with corresponding respective estimates of 0.7%, 45.5%, 40.2%, and 13.3% using conventional geochemical tracers alone. Wald-Wolfowitz Runs test pairwise comparisons of the posterior distributions of predicted source proportions generated using the two different composite signatures confirmed statistically significant differences. These differing proportions demonstrated the sensitivity of predicted source apportionment to the inclusion or exclusion of a weathering index providing information reflecting the relative coverage of more erodible lithological formations in each of the sub-basins (32.7% sub-basin 1, 53.6% sub-basin 2, 58.5% sub-basin 3, and 63.2% sub-basin 4). The outputs of this study will be used to target sediment mitigation strategies.
Show more [+] Less [-]Tracing controlling factors of riverine chemistry in a headwater tributary of the Yangtze River, China, inferred from geochemical and stable isotopic signatures Full text
2019
Herath, Imali Kaushalya | Wu, Sheng Jun | Ma, Mao Hua | Jianli, Wang | Chandrajith, Rohana
The Jialing River is the second largest headwater tributary of the Yangtze River in China, therefore, the river water has been contaminated and water quality is deteriorated. Hence, this study aims to find the main controling factors of riverine chemistry. 52 water samples were collected for the determination of major ions and environmental isotopes of δ¹⁸O and δ²H. Stoichiometry of geochemical data with mixing end members and multivariate statistical analysis were employed with integrated GIS approach for data interpretations. The δ¹⁸O and δ²H of the Jialing River Basin (JRB) were used to define the origin of river water from meteoric water and water in the spring season is affected by high evaporation and evaporates dissolution. The average TDS 301 mg/L that is higher than the Yangtze River. In the JRB, 80% of the anion in water samples represented HCO₃⁻ (207 mg/L) and SO₄²⁻ (80 mg/L) while 80% of the cations were accounted by Ca²⁺ (59.8 mg/L) and Mg²⁺ (17.9 mg/L). The water chemistry mainly derived from the water rock interaction. Piper plot indicated that Ca-Mg-HCO₃⁻ was the most dominant water type and most ions derived from carbonate weathering by H₂SO₄ and H₂CO₃. The stoichiometry results further confirmed carbonate weathering is dominant than silicate weathering. Evaporate ions were modified by anthropogenic sources. Agricultural inputs are higher than the industry and atmospheric inputs. Redundancy analysis showed that most contributive land-use type in explaining riverine chemistry was the cultivate land (62.6, 66.4, and 67.9%) at all buffer scales of 30, 20, and 10 km, respectively. Forest and grasslands mostly correlate with Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, EC, pH, and HCO₃⁻ while anthropogenic land-use types such as cultivated and construction lands correlate with Na⁺, K⁺, Cl⁻, and NO₃⁻. These results revealed that the lithology of the basin mainly controlled the upstream water chemistry while downstream riverine chemistry was controlled by both lithology and anthropogenic inputs. Nevertheless, this study suggested that explicitly determining the controlling factors of riverine chemistry involves a complex process and combination of different chemical constituents and factors on river water. However, this study managed to provide useful information to further understanding of the geochemical process in JRB.
Show more [+] Less [-]Association between DNA damage, dietary patterns, nutritional status, and non-communicable diseases in coal miners Full text
2019
dos Santos, Marina | Penteado, Júlia Oliveira | Soares, Maria Cristina Flores | Muccillo-Baisch, Ana Luíza | Da Silva-Júnior, Flávio Manoel Rodrigues
Several negative health effects have been associated with environmental pollution. Coal mining activities are related to DNA damage. However, the impact of lifestyle as well as environmental exposure must be considered when evaluating the extent of DNA damage. The aim of this cross-sectional study was to analyze nutritional status, dietary patterns, and the prevalence of non-communicable diseases (CNCDs) among coal miners as well as to investigate the correlation of these variables with DNA damage. We used a questionnaire to assess demographics, health, and dietary habits. The nutritional status was measured in terms of BMI (body mass index) and DNA damage was assessed by the comet assay. The sample population was composed of 158 coal miners from the largest coal mining company in South of Brazil, and majority of them were classified as overweight (51.3%) or obese (28.5%). Hypertension was the most common CNCD (50.6%) and a majority of these workers consumed all groups of foods three or more times a week. There was a significant positive correlation between BMI and DNA damage (r = 0.1646, p = 0.04) and this association was stronger (r = 0.2556, p = 0.04) in coal miners with some CNCD. There was no significant correlation between dietary patterns and DNA damage in coal miners. These results suggest that the nutritional status and CNCD increase the extent of DNA damage in coal miners. Since this population is at high occupational risk, specific strategies should be designed to improve the health of these workers, aiming to achieve health equity.
Show more [+] Less [-]DMSO EVOL™ as novel non-toxic solvent for polyethersulfone membrane preparation Full text
2019
Marino, Tiziana | Galiano, Francesco | Simone, Silvia | Figoli, Alberto
The possibility of replacing traditional toxic solvents normally employed during the preparation of polymeric membranes with greener alternatives represents a great challenge for safeguarding the human health and protecting the environment. In this work, an improved and pleasant-smelling version of dimethylsulfoxide (DMSO), i.e., DMSO EVOL™, was used as “greener solvent” for the preparation of polyethersulfone (PES) microfiltration (MF) membranes using a combination of non-solvent and vapor-induced (NIPS and VIPS, respectively) phase separation technique for the first time. The effect of two different additives polyvinylpyrrolidone (PVP) and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic®) together with polyethylene glycol (PEG) on membrane properties and performances has been also evaluated. The membranes were characterized in terms of morphology, mechanical resistance, pore size, and water permeability. The obtained results show that DMSO EVOL™ is able to replace 1-methyl-2-pyrrolidone (NMP), which is a more toxic solvent normally used for the preparation of PES membranes. Furthermore, it was possible to tune the produced membranes in the range of MF (0.1–0.6 μm).
Show more [+] Less [-]Oxidative stress in microbes after exposure to iron nanoparticles: analysis of aldehydes as oxidative damage products of lipids and proteins Full text
2019
Semerád, Jaroslav | Moeder, Monika | Filip, Jan | Pivokonský, Martin | Filipová, Alena | Cajthaml, Tomáš
Due to their enhanced reactivity, metal and metal-oxide nanoscale zero-valent iron (nZVI) nanomaterials have been introduced into remediation practice. To ensure that environmental applications of nanomaterials are safe, their possible toxic effects should be described. However, there is still a lack of suitable toxicity tests that address the specific mode of action of nanoparticles, especially for nZVI. This contribution presents a novel approach for monitoring one of the most discussed adverse effects of nanoparticles, i.e., oxidative stress (OS). We optimized and developed an assay based on headspace-SPME-GC-MS analysis that enables the direct determination of volatile oxidative damage products (aldehydes) of lipids and proteins in microbial cultures after exposure to commercial types of nZVI. The method employs PDMS/DVB SPME fibers and pentafluorobenzyl derivatization, and the protocol was successfully tested using representatives of bacteria, fungi, and algae. Six aldehydes, namely, formaldehyde, acrolein, methional, benzaldehyde, glyoxal, and methylglyoxal, were detected in the cultures, and all of them exhibited dose-dependent sigmoidal responses. The presence of methional, which was detected in all cultures except those including an algal strain, documents that nZVI also caused oxidative damage to proteins in addition to lipids. The most sensitive toward nZVI exposure in terms of aldehyde production was the yeast strain Saccharomyces cerevisiae, which had an EC₅₀ value of 0.08 g/L nZVI. To the best of our knowledge, this paper is the first to document the production of aldehydes resulting from lipids and proteins as a result of OS in microorganisms from different kingdoms after exposure to iron nanoparticles.
Show more [+] Less [-]Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil Full text
2019
Hawrot-Paw, Małgorzata | Ratomski, Patryk | Mikiciuk, Małgorzata | Staniewski, Jacek | Koniuszy, Adam | Ptak, Piotr | Golimowski, Wojciech
Phytoremediation is a cost-effective and ecologically friendly process that involves the use of plants to uptake, accumulate, translocate, stabilize, or degrade pollutants. The present study was conducted to demonstrate the potential of pea (Pisum sativum L. spp. sativum) cultivar Blauwschokker to phytostimulate biodiesel degradation in an agricultural soil, considering the influence of biological remediation on selected physiological parameters of plants and the amount and activity of soil microflora. Biodiesel was spiked into soil in dose of 50 g kg⁻¹ of dry mass soil. The results of the study showed that the rate of biodiesel degradation in the vegetated soil was higher than that occurring by natural attenuation. At the same time, biodiesel showed a positive effect on the growth, development, and activity of soil bacteria and fungi. Moreover, the obtained results showed an improvement in physiological parameters of plants, including an increase in chlorophyll a and total chlorophyll content and higher relative water content in leaves in the presence of biodiesel.
Show more [+] Less [-]Analysis of oxidative stress and cellular aggregation in the coelomocytes of earthworms collected from metal contaminated sites of industrial and agricultural soils of West Bengal, India Full text
2019
Ray, Sajal | Gautam, Arunodaya | Ray, Abhishek | Das, Subhadeep | Ray, Mitali
Endogeic earthworm Metaphire posthuma (Valliant, 1868) is a common biological component of the tropical soil of India and other countries. The species is reported to influence fertility and porosity of soil and bear a high composting potential. Intensive agricultural, industrial, and mining activities increase the amount of toxic metals in soil causing physiological adversity in earthworm and other biotic components in soil. Coelomocytes, the chief immunoeffector cells of earthworm, perform diverse physiological functions under the challenge of toxins and pathogens. The experimental earthworms collected separately from soils with agricultural and tannery activities were subjected to quantitation of prooxidation and antioxidation parameters for estimation of oxidative stress. Total count, cellular aggregation, generation of reactive oxygen species (ROS), superoxide anion, nitric oxide, activities of phenoloxidase, superoxide dismutase, catalase and glutathione-s-transferase, and amount of total protein were estimated in the coelomocytes of M. posthuma as experimental end points of toxicity screening. Concentrations of cadmium, chromium, lead, and mercury were determined in the soil samples to assess the degree of toxic contamination. The increase in the amount of prooxidants and decrease in the activities of antioxidant enzymes indicated the signs of oxidative stress in the coelomocytes of the organism. Aggregation of circulating coelomocytes is considered as an immune response involved in pathogen encapsulation response as reported in many invertebrates. Decrease in coelomocyte aggregation in earthworm collected from contaminated sites suggested a state of inappropriate shift of the innate immune status. Toxin-induced oxidative stress and reductions in cell aggregation response are the signs of immunocompromisation of M. posthuma. Present findings bear a prospect of this experimental species as an indicator of soil pollution.
Show more [+] Less [-]The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and anti-apoptotic activities Full text
2019
Al-Brakati, Ashraf Y. | Fouda, Manar S. | Tharwat, Ahmed M. | Elmahallawy, Ehab Kotb | Kassab, Rami B. | Abdel Moneim, Ahmed E.
In the current report, we examined the potential beneficial role of soursop fruit extract (SSFE) on liver injury induced by a single paracetamol (APAP) overdose (2000 mg/kg). Thirty-five Wistar albino rats were randomly divided into five groups as follows: control, SSFE, APAP, SSFE+APAP, and silymarin (SIL)+APAP. APAP intoxication was found to elevate alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin levels. Moreover, it increased the levels of malondialdehyde, nitrites, and nitrates and depleted glutathione, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. APAP intoxication inactivated the nuclear factor erythroid 2-related factor 2 (Nrf2) defense pathway and upregulated the expression of heme oxygenase-1 (HO-1). APAP administration enhanced the activation of nuclear factor-kappa B (NF-κB), the elevation of tumor necrosis factor-alpha and interleukin 1-beta levels, and the upregulation of inducible nitric oxide synthase mRNA expression. In addition, APAP activated the overexpression of Bax protein, increased release of cytochrome c, and the downregulation of Bcl-2 protein. Finally, APAP-induced overexpression of transforming growth factor-beta (TGF-β) further suggested enhanced liver damage. On the other hand, SSFE pretreatment attenuated these biochemical, molecular, and histopathological alterations in the liver, which might be partially due to the regulation of hepatic Nrf2/HO-1 and downregulation of NF-κB and TGF-β.
Show more [+] Less [-]Individual and combined toxicity of carboxylic acid functionalized multi-walled carbon nanotubes and benzo a pyrene in lung adenocarcinoma cells Full text
2019
Rezazadeh Azari, Mansour | Mohammadian, Yousef | Pourahmad, Jalal | Khodagholi, Fariba | Peirovi, Habibollah | Mehrabi, Yadollah | Omidi, Meisam | Rafieepour, Athena
Co-exposure to carboxylic acid functionalized multi-walled carbon nanotubes (F-MWCNTs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo a pyrene (BaP) in ambient air have been reported. Adsorption of BaP to F-MWCNTs can influence combined toxicity. Studying individual toxicity of F-MWCNTs and BaP might give unrealistic data. Limited information is available on the combined toxicity of F-MWCNTs and BaP in human cells. The objective of the present work is to evaluate the toxicity of F-MWCNTs and BaP individually and combined in human lung adenocarcinoma (A549 cells). The in vitro toxicity is evaluated through cell viability, the production of reactive oxygen species (ROS), apoptosis, and the production of 8-OHdG assays. Adsorption of BaP to F-MWCNTs was confirmed using a spectrophotometer. The results indicated that the F-MWCNTs and BaP reduce cell viability individually and produce ROS, apoptosis, and 8-OHdG in exposed cells. Stress oxidative is found to be a mechanism of cytotoxicity for both F-MWCNTs and BaP. Combined exposure to F-MWCNTs and BaP decreases cytotoxicity compared to individual exposure, but the difference is not statistically significant in all toxicity assays; hence, the two-factorial analysis indicated an additive toxic interaction. Adsorption of BaP to F-MWCNTs could mitigate the bioavailability and toxicity of BaP in biological systems. Considering the mixture toxicity of MWCNTs and BaP is required for risk assessment of ambient air contaminants.
Show more [+] Less [-]