Refine search
Results 431-440 of 783
A Merging Algorithm for Aerosol Size Distribution from Multiple Instruments Full text
2009
Ondráček, J. | Ždímal, V. | Smolík, J. | Lazaridis, M.
A simple algorithm for merging aerosol number particle size distribution (AMANpsd) data from multiple instruments is presented. The code uses a multilognormal model for the evaluation of merged aerosol particle size distribution data. AMANpsd is able to recalculate the aerodynamic diameter to the mobility diameter in the cases when, e.g., the Aerodynamic Particle Sizer data need to be connected to the data obtained by the Scanning Mobility Particle Sizer. The only assumption is the lognormality of the particle size distribution. As a result, the algorithm gives the parameters of the multilognormal model (particle number concentration, geometric mean diameter, and geometric standard deviation of each single lognormal mode). The algorithm was tested on a set of data from intensive indoor/outdoor measurement campaigns performed in Prague (Czech Republic), Oslo (Norway), and Milan (Italy). The particle size distribution data set covers the range of particle mobility diameters from 2 nm up to 8 μm. The agreement between the multilognormal model and the available experimental data from multiple instruments was satisfactory.
Show more [+] Less [-]Sediment-Water Interactions of Bisphenol A Under Simulated Marine Conditions Full text
2009
Tian, Chong | Wang, Jiang-tao | Song, Xing-liang
The sorption behavior of bisphenol A (BPA) on marine sediments treated using different methods was investigated in batch equilibrium experiments. Adsorption isotherms were well fitted to Freundlich model and the model parameters, K F and n, had been evaluated. When temperature decreased from 308 to 288 K, Freundlich constant (K F) increased about 200%. K F increased by approximately 92.6% with increase of salinity from 1:2 artificial seawater (1:2 ASW) to ASW conditions. The plateau sorption capacity was around 0.8579 mg/g in the pH range 7.46-8.34, whereas the adsorption capacity decreased from 0.8579 to 0 mg/g when pH from 8.34 to 8.91, suggesting that the undissociated species were adsorbed more readily and that electrostatic repulsion may inhibit sorption as pH increases. The increase of K F value between the two media from natural seawater to ASW was around 25.3%, indicating the presence of dissolved organic matter appeared to have a significant effect on sorption. Mineral surface of sediment, together with microporosity of sediment, showed to be primarily responsible for the sorption of BPA.
Show more [+] Less [-]Nutrient Pollution in Laucala Bay, Fiji Islands Full text
2009
Singh, Sarabjeet | Aalbersberg, W. G. L. | Morrison, R. J.
The Laucala Bay coastal system was investigated from 2003 to 2005 to evaluate the changes in water quality (nutrients) after improvements in sewage effluent quality from Kinoya sewage treatment plant (KSTP), whose output is discharged into the bay. The oxidized nitrogen (NO x -N) values averaged 1.31 µM, but varied from 0.76 to 3.77 µM, and the filterable reactive phosphate or orthophosphate (FRP) averaged 0.77 µM, ranging from 0.24 to 2.37 µM. The mean concentrations of NO x -N and FRP, respectively, were two and ten times higher than concentrations found in unpolluted sites in Fiji. Based on these values and NH₃ concentrations from parallel studies, Redfield ratio estimates suggest that primary productivity of the bay is N limited. No significant decrease in concentration of both NO x -N and FRP was found in Laucala Bay waters during the present investigation compared to concentrations found in two previous studies. This indicates that KSTP effluent may be only a minor source of nutrients into the bay, and to protect the Laucala Bay ecosystem from increasing nutrient pollution, there is a need to control nutrient input from other major point and nonpoint sources.
Show more [+] Less [-]Characterizing Episodic Stream Acidity During Stormflows in the Great Smoky Mountains National Park Full text
2009
Deyton, Edwin B. | Schwartz, John S. | Robinson, R Bruce | Neff, Keil J. | Moore, Stephen E. | Kulp, Matt A.
Episodic acidification of surface waters has been observed in the Great Smoky Mountains National Park, similar to other forested watersheds with base-poor bedrock in the eastern US receiving acids from atmospheric deposition. Three remote, forested, high-elevation streams were selected in the Little Pigeon River watershed for study; two of which brook trout have extirpated, and believed to have resulted from severe acidity during stormflows. This research characterized stream chemistry during episodes in order to better understand potential factors that contribute to rapid drops in pH and acid neutralizing capacity (ANC) during stormflows. Autosamplers initialized by sondes, collected samples during storm events for analysis of pH, ANC, cations, and anions over a 15-month period. ANC and pH depressions, and increased concentrations in sulfate, nitrate, and organic acids were observed for all storms at each study site. ANC contribution analysis indicated sulfate was the strongest contributor to ANC depressions, but nitrate, cation dilution, and organic acids were also significant in some cases. Acidic deposition appears to be the primary source of episodic acidification, supported also by the finding that larger stormflows preceded by long, dry periods resulted in significantly larger pH depressions. It appears stream acidification episodes may be driven by acid deposition. However, this study documents the variability of several ion contributors to observed stormflow ANC depressions illustrating the spatial and temporal complexity of watershed processes that influence this phenomenon.
Show more [+] Less [-]Simulated Summertime Regional Ground-Level Ozone Concentrations over Greece Full text
2009
Poupkou, Anastasia | Melas, Dimitrios | Ziomas, Ioannis | Symeonidis, Panagiotis | Lisaridis, Iraklis | Gerasopoulos, Evangelos | Zerefos, Christos
Ground-level ozone concentrations were estimated for Greece during a summer period of the year 2000 using the regional air quality model UAM-V off-line coupled with the mesoscale meteorological model MM5. An anthropogenic NOx, NMVOCs and CO emission inventory and biogenic NMVOCs emission data were used to support model simulations. The evaluation analysis indicates a quite satisfactory model performance in reproducing ozone levels. The simulated mean ozone concentrations are above the 32-ppb EU phytotoxicity limit over almost all continental and maritime areas of Greece. Over the greater part of the country, the background mean ozone levels range from 40 to 55 ppb. Ozone values higher than the 55-ppb EU human health protection limit reaching 60 ppb dominate part of the southern Aegean Sea that is influenced by the Athens urban plume. In the areas where anthropogenic emission densities are high, the mean ozone levels vary between 20 and 40 ppb. Over the greater part of Greece, the simulated mean daily maximum ozone concentrations range from 50 to 65 ppb. More enhanced maximum ozone concentrations up to 95 ppb mainly dominate over the greater areas of the two largest Greek urban centres (Athens and Thessaloniki) and over the continental and maritime areas south of Athens which are under the influence of the urban plume.
Show more [+] Less [-]Applying MAR Analysis to Identify Human and Non-Human Fecal Sources in Small Kentucky Watersheds Full text
2009
Ritchey, S. A. | Coyne, M. S.
The recurrence of reports citing water quality impairments in watersheds is evidence that tools are needed to identify pollution sources and facilitate restoration efforts such as implementing total maximum daily limits (TMDLs) or best management practices (BMPs). Fecal bacteria in surface waters are one of the most commonly cited impairments to water quality. This study evaluated microbial source tracking (MST), specifically multiple antibiotic resistance (MAR) analysis, as a management tool to differentiate nonpoint source pollution into source groups. A library containing Escherichia coli (E. coli, EC) and fecal streptococci (FS) isolates from poultry (EC n = 282, FS n = 650), human (EC n = 152, FS n = 240), wildlife (EC n = 17, FS n = 43), horse (EC n = 79, FS n = 82), dairy cattle (EC n = 38, FS n = 42), and beef cattle (EC n = 49, FS n = 46) sources was created. The MAR analysis was conducted on the isolates using a profile of seven antibiotics. The antibiotic signatures of unknown source isolates from Elkhorn and Hickman Creek watersheds were evaluated against the library to determine the contributions of potential fecal inputs from the respective sources. Correct classification was >60% when analyzed at the human and non-human-level of classification. On a watershed basis, both watersheds produced similar results; inputs from non-human sources were the greatest contributors to nonpoint source pollution. The results from the multiple antibiotic resistance (MAR) analysis revealed that the information produced, coupled with knowledge of the watershed and its associated land uses, would be helpful in allocating resources to remediate impaired water quality in such watersheds.
Show more [+] Less [-]Characterizing Uncertainties Associated with Contaminant Transport Modeling through a Coupled Fuzzy-Stochastic Approach Full text
2009
Qin, X. S. | Huang, G. H.
A factorial-design-based fuzzy-stochastic modeling system (FFSMS) was developed in this study to systematically investigate impacts of uncertainties associated with hydrocarbon contaminant transport in subsurface through integration of a compositional model, factorial design method, fuzzy modeling approach and Monte Carlo simulation technique. The goodness of fit of the numerical model was analyzed by means of a pilot-scale experimental system. Once the model was calibrated, it was used in order to predict the contaminant concentration depending on values of several parameters including intrinsic permeability, porosity, and longitudinal dispersivity. These parameters were imprecisely known, and such an imprecision was handled by means of both fuzzy sets and/or stochastic theory. The individual and joint effects of these uncertain parameters were analyzed by modeling the dependence between the prediction and the imprecise parameters (factors) through factorial design analysis. The study results indicated that the uncertainties associated with input parameters had significant impacts on modeling outputs; the degree of influence of each model input varied significantly with the level of its imprecision. The study results demonstrated that proposed FFSMS can efficiently analyze the impact of different uncertainty sources associated with different hydrogeological parameters on the prediction of the hydrocarbon concentrations in groundwater. Such studies would provide strong basis for performing successful risk assessment and efficient remediation design for the management of contaminated site.
Show more [+] Less [-]Degradative Oxidation of 2,4,6 Trichlorophenol Using Advanced Oxidation Processes - A Comparative Study Full text
2009
Saritha, P. | Raj, D Samuel Suman | Aparna, C. | Laxmi, P Nalini Vijaya | Himabindu, V. | Anjaneyulu, Y.
In the present study, a comparative assessment of 2,4,6-T (2,4,6-Trichlorophenol) degradation by different AOPs (Advanced Oxidation Processes - UV, UV/ H₂O₂, Fenton, UV/Fenton and UV/TiO₂) in the laboratory scale is performed. The effects of different reactant concentrations and pH are assessed. 2,4,6-T removal, Total Organic Carbon mineralization (TOC) and dechlorination are monitored. Of all the AOPs, UV/Fenton process is more effective in degrading 2,4,6-T. The optimum conditions obtained for the best degradation with UV/Fenton are: pH = 3, Fe⁺² concentration of about 5 ppm, and peroxide concentration of 100 ppm for an initial 100 ppm of 2,4,6 T concentration at room temperature. In these conditions, a pseudo first-order rate constant is evaluated. The degradation rate of 2,4,6 T followed the order: {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}}} \right. \kern-\nulldelimiterspace} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}} > {\text{UV}} $$]]>
Show more [+] Less [-]Creosote Contamination in Sediments of the Grey Owl Marina in Prince Albert National Park, Saskatchewan, Canada Full text
2009
Evans, Marlene S. | Fazakas, Kirsten | Keating, Jonathan
The rate at which creosote-treated pilings release polycyclic aromatic hydrocarbons (PAHs) into the environment should diminish with structure age and weathering, and so, it may be assumed that PAH concentrations in the vicinity of old structures (>30 years) may approach background levels. However, this may not be true in cold environments where PAH release and degradation rates are slow and where pilings continue to experience significant physical damage. Moreover, PAHs will remain high in the vicinity of pilings if current and wave action is insufficient to disperse and dilute PAHs over a wider area and/or where PAHs do not become diluted and buried by uncontaminated sediments. This is demonstrated in our investigation of the sediments of the Grey Owl Marina, located in Prince Albert National Park, in central Saskatchewan, Canada. The marina, constructed in the early 1960s, consists of six piers and is protected from strong wave action by a breakwater. PAH concentrations were high in sediments collected under the piers and inside the boat slips, exceeding probable effect levels for several compounds. Various lines of physical and chemical evidence pointed to creosote as being the primary PAH source with a mixture of relatively undegraded and weathered PAHs being present. PAH concentrations decreased rapidly 2 m and further away from the pilings as a result of dilution with increasing dispersal over a broadening area. There was evidence of benthic community impairment, with total abundances negatively correlated with PAH concentrations. According to the Methods for Ranking Contaminated Aquatic Sites on Canadian Federal Properties, areas with the highest hazard scores were under the piers and inside the boat slips, while areas with the lowest hazard scores were >10 m from the pilings. Therefore, remedial actions based on piling and contaminated sediment removal may need to be conducted over only a small area, i.e., within 2 m of the pilings.
Show more [+] Less [-]Water supply and pollution control
2009
Viessman, Warren
For upper-division undergraduate or beginning graduate courses in civil and environmental engineering, this text has been revised and modernised to meet the needs of today's environmental engineering students who will be engaged in the design and management of water and wastewater systems.
Show more [+] Less [-]