Refine search
Results 431-440 of 8,011
Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures Full text
2021
Ma, Lan | Wang, Wen-Xiong | Evans, R Douglas
The Pearl River Estuary (PRE), the largest estuary in Southern China, historically has suffered from metal contamination as a result of inputs from different riverine discharges. Determining the sources of metals accumulation in local aquatic flora and fauna remains a great challenge for this estuarine system with complex water circulation. In this study, Zn isotope ratios were measured in local oysters (Crassostrea hongkongensis) collected at 8 locations in the estuary on four occasions from 2014 to 2018, to better understand and assess the contamination sources. The results showed no significant differences (p < 0.05) in δ⁶⁶Zn values in oysters among the four sampling dates within individual sites. However, approximately a 0.67‰ (range from -0.66‰ to 0.01‰) difference in average δ⁶⁶Zn values was consistently found in oysters collected from the east side of the estuary compared to the west side, despite their comparable Zn concentrations. A mixing model was subsequently used to estimate the relative contributions from various sources to the δ⁶⁶Zn values in these oysters. The mixing model predicts that zinc derived from the dissolved fraction (approximately 80 %) was the dominant uptake pathway for oysters collected at the east shore whereas approximately 50 % of the Zn in oysters collected at the west shore was derived from the particulate fraction. The mixing model also was used to estimate the relative impacts of fresh versus saline water on the measured δ⁶⁶Zn values. Contributions from these two sources also varied between the east and west shores. This study presents the first data for Zn isotope ratios in oysters from the PRE, providing new insight for using Zn isotope ratios in oysters as a powerful tracer of sources in a complex estuarine system.
Show more [+] Less [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta Full text
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
Show more [+] Less [-]Multicompartment and cross-species monitoring of contaminants of emerging concern in an estuarine habitat Full text
2021
Miller, Thomas H. | Ng, Keng Tiong | Lamphiere, Aaron | Cameron, Tom C. | Bury, Nicolas R. | Barron, Leon P.
The fate of many chemicals in the environment, particularly contaminants of emerging concern (CEC), have been characterised to a limited extent with a major focus on occurrence in water. This study presents the characterisation, distribution and fate of multiple chemicals including pharmaceuticals, recreational drugs and pesticides in surface water, sediment and fauna representing different food web endpoints in a typical UK estuary (River Colne, Essex, UK). A comparison of contaminant occurrence across different benthic macroinvertebrates was made at three sites and included two amphipods (Gammarus pulex &Crangon crangon), a polychaete worm (Hediste diversicolor) and a gastropod (Peringia ulvae). Overall, multiple contaminants were determined in all compartments and ranged from; <LOQ – 386 ng L⁻¹ in surface water (n = 59 compounds), <LOQ – 146 ng g⁻¹ in sediment (n = 39 compounds) and <LOQ – 91 ng g⁻¹ biota (n = 33 compounds). H. diversicolor and P. ulvae (sediment dwellers) showed greater chemical body burden compared with the two swimming amphipod species sampled (up to 2.5 - 4-fold). The most frequently determined compounds in biota (100%, n = 36 samples) included; cocaine, benzyoylecgonine, carbamazepine, sertraline and diuron. Whilst some of the highest concentrations found were in species H. diverscolor and P. ulvae for psychoactive pharmaceuticals including citalopram (91 ng g⁻¹), sertraline (69 ng g⁻¹), haloperidol (66 ng g⁻¹) and the neonicotinoid, imidacloprid (33 ng g⁻¹) Sediment was noted as an important exposure route for these benthic dwelling organisms and will be critical to monitor in future studies. Overall, the analysis of multiple species and compartments demonstrates the importance of including a range of exposure pathways in order to appropriately assess chemical fates and associated risks in the aquatic environment.
Show more [+] Less [-]Trophic dynamics of selenium in a boreal lake food web Full text
2021
Graves, Stephanie D. | Liber, K. (Karsten) | Palace, Vince | Hecker, Markus | Doig, Lorne E. | Janz, David M.
Selenium (Se) is both an essential micronutrient and a contaminant of concern that is of particular interest in mining-influenced waterbodies in Canada. The objective of this research was to characterize the trophic dynamics of selenium along a gradient of exposure concentrations in a Canadian boreal lake ecosystem. From June 20 to August 22, 2018, six limnocorrals (littoral, ∼3000 L enclosures) were spiked with mean measured concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 μg Se/L as selenite, and three limnocorrals served as untreated controls (background aqueous Se = 0.08–0.09 μg/L). Total Se (TSe) concentrations in water, periphyton, phytoplankton, sediment, benthic macroinvertebrates, zooplankton and female finescale dace (Phoxinus neogaeus; added on day 21 of the experiment) were measured throughout and at the end of the experiment. Total Se bioaccumulation by organisms was generally non-linear. Greater uptake by phytoplankton than periphyton was observed. Taxonomic differences in accumulation of TSe by invertebrates (Heptageniidae = Chironomidae > zooplankton) were observed as well. Fish muscle and ovary tissue TSe bioaccumulation was more variable than that at lower trophic levels and uptake patterns indicated that fish did not reach steady state concentrations. This research provides field-derived models for the uptake of Se by algae and invertebrates, and contributes to a better understanding of the dynamics of TSe bioaccumulation over a gradient of exposure concentrations in cold-water lentic systems.
Show more [+] Less [-]Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos Full text
2021
Gong, Guiyi | Kam, Hiotong | Tse, Yu-chung | Giesy, John P. | Seto, Sai-wang | Lee, Simon Ming-yuen
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Show more [+] Less [-]Deoxygenation reduces growth rates and increases assimilation of essential trace metals in gilthead seabream (Sparus aurata) Full text
2021
McNicholl, Conall | Oberhaensli, François | Taylor, Angus | Holmerin, Isak | Swarzenski, Peter W. | Metian, Marc
The widespread decline in oceanic dissolved oxygen (DO), known as deoxygenation, is a threat to many marine ecosystems, and fish are considered one of the more vulnerable marine organisms. While food intake and growth rates in some fish can be reduced under hypoxic conditions (DO ~ 60 μmol kg⁻¹), the dietary transfer of essential metals remains unclear. In this context, we investigated the influence of DO on the dietary acquisition of two essential metals (Zn and Mn) in the commercially important gilthead seabream (Sparus aurata) using radiotracer techniques. Fish were exposed to variable DO conditions (normoxia 100% DO, mild-hypoxia 60% DO, and hypoxia 30% DO), and fed a single radiolabeled food ration containing known activities of ⁵⁴Mn and ⁶⁵Zn. Depuration and assimilation mechanisms under these conditions were followed for 19 d. Based on whole body activity after the radio-feeding, food consumption tended to decrease with decreasing oxygen, which likely caused the significantly reduced growth (- 25%) observed at 30% DO after 19 d. While there was an apparent reduction in food consumption with decreasing DO, there was also significantly higher essential metal assimilation with hypoxic conditions. The proportion of ⁶⁵Zn remaining was significantly higher (~60%) at both low DO levels after 24 h and 19 d while ⁵⁴Mn was only significantly higher (27%) at the lowest DO after 19 d, revealing element specific effects. These results suggest that under hypoxic conditions, stressed teleost fish may allocate energy away from growth and towards other strategic processes that involve assimilation of essential metals.
Show more [+] Less [-]Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison Full text
2021
Xu, Miaoqing | Yao, Qi | Chen, Danlu | Li, Manchun | Li, Ruiyuan | Gao, Bingbo | Zhao, Bo | Chen, Ziyue
Ground level ozone exerts a strong impact on crop yields, yet how to properly quantify ozone induced yield losses in China remains challenging. To this end, we employed a series of O₃-crop models to estimate ozone induced yield losses in China from 2014 to 2018. The outputs from all models suggested that the total Relative Yield Losses (RYL) of wheat in China from 2014 to 2018 was 18.4%–49.3% and the total RYL of rice was 6.2%–52.9%. Consequently, the total Crop Production Losses (CPL) of wheat and rice could reach 63.9–130.4 and 28.3–35.4 million tons, and the corresponding Total Economic Losses (TEL) could reach 20.5–44.7 and 11.0–15.3 billion dollars, stressing the great importance and urgency of national ozone management. Meanwhile, the estimation outputs highlighted the large variations between different regional O₃-crop models when applying to large scales.Instead of applying one unified O₃-crop models to all regions across China, we also explored the strategy of employing specific O₃-crop models in corresponding (and neighboring) regions to estimate ozone induced yield loss in China. The comparison of two strategies suggested that the mean value from multiple models may still present an inconsistent over/underestimation trend for different crops. Therefore, it is a preferable strategy to employ corresponding O₃-crop models in different regions for estimating the national crop losses caused by ozone pollution. However, the severe lack of regional O₃-crop models in most regions across China makes a robust estimation of national yield losses highly challenging. Given the large variations between O₃-crop interactions across regions, a systematic framework with massive regional O₃-crop models should be properly designed and implemented.
Show more [+] Less [-]Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit Full text
2021
Xie, Lihong | Wu, Yanfei | Wang, Yong | Jiang, Yueming | Yang, Bao | Duan, Xuewu | Li, Taotao
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H₂O₂) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Show more [+] Less [-]Meteorological patterns, technical validation, and chemical comparison of atmospheric dust depositions and bulk sand in the Arabian Gulf region Full text
2021
Elsayed, Yehya | Kanan, Sofian | Farhat, Ahmad
This study reports seasonal variations of meteorological parameters, atmospheric dust and dust-borne heavy metals concentrations measured, over a period of two years, next to two major airports (Dubai International Airport and Abu Dhabi International Airport) in the Gulf Cooperation Council (GCC) region. On-line monitoring stations were installed at each location next to dust samplers used to frequently collect PM2.5 and PM10 on Teflon filters for metal analysis. Clear seasonal variation in meteorological parameters were identified. The particulate matter concentrations depicted from the two locations were continuously monitored. The PM2.5 concentration ranged from 50 to 100 μg/m³ on normal days but reached 350–400 μg/m³ per day during mild storms. The PM10 levels ranged between 100 and 250 μg/m³ during normal days and spiked to 750 μg/m³ during mild storms. Energy Dispersive X-Ray Analysis (EDS) revealed the presence of significant amounts of alkali and alkaline earth metals, which pose potential harm to aircraft engines. ICP analysis showed the presence of heavy and toxic metals in concentrations that may pose harm to human health. Bulk sand samples from Abu Dhabi sites showed chemical similarities to the atmospheric dust samples. The concentrations of heavy metals, PM2.5, and PM10 are at levels that require further monitoring due to their impact on human health. The two years meteorological monitoring, with the seasonal variations, provided additional regional data in the Arabian Gulf. Furthermore, the study concluded that Sand and Dust storms (SDS) occur more frequently at the northern Arabian Gulf compared to its southern region. The chemical correlation between atmospheric dust and regional desert sand suggests the localized origin of the smaller dust particles that may form by breaking apart of the ground sand grains. As a result of the ongoing urbanization in the region, it is essential to collect additional data from various locations for a longer period of time.
Show more [+] Less [-]Short-term variability of bisphenols in spot, morning void and 24-hour urine samples Full text
2021
Gys, Celine | Bastiaensen, Michiel | Malarvannan, Govindan | Ait Bamai, Yu | Araki, Atsuko | Covaci, Adrian
Due to worldwide regulations on the application of the high production volume industrial chemical bisphenol A (BPA) in various consumer products, alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) are increasingly used. To assess human exposure to these chemicals, biomonitoring of urinary concentrations is frequently used. However, the short-term variability of alternative bisphenols has not been evaluated thoroughly yet, which is essential to achieve a correct estimation of exposure. In this study, we collected all spot urine samples from ten healthy adults for five consecutive days, and an additional 24 h pooled sample. We measured the concentrations of seven bisphenols (BPAF, BPF, BPA, BPB, BPZ, BPS and BPAP) in these samples using gas chromatography coupled to tandem mass spectrometry. BPA, BPF and BPS were frequently found in spot samples (>80%), while bisphenol AP (BPAP) was detected in 43% of spot samples. Calculations of intra-class correlation coefficients (ICCs) showed that reproducibility of these four bisphenols was relatively poor (<0.01–0.200) but improved when concentrations were corrected for urine dilution using creatinine levels (0.128–0.401). Of these four bisphenols, BPF showed the best reproducibility (ICC 0.200–0.439) and BPS the most variability (ICC <0.01–0.128). In general, the within-participant variability of bisphenol levels was the largest contributor to the total variance (47–100%). We compared repeated first morning voids to 24 h pooled urine and found no significantly different concentrations for BPA, BPF, BPS, or BPAP. Levels of BPA and BPF differed significantly depending on the sampling time throughout the day. The findings in this study suggest that collecting multiple samples per participant over a few days, in predefined time windows throughout the day, could result in a more reliable estimation of internal exposure to bisphenols.
Show more [+] Less [-]