Refine search
Results 441-450 of 4,029
The partitioning behavior of persistent toxicant organic contaminants in eutrophic sediments: Coefficients and effects of fluorescent organic matter and particle size
2016
He, Wei | Yang, Chen | Liu, Wenxiu | He, Qishuang | Wang, Qingmei | Li, Yilong | Kong, Xiangzhen | Lan, Xinyu | Xu, Fuliu
In the shallow lakes, the partitioning of organic contaminants into the water phase from the solid phase might pose a potential hazard to both benthic and planktonic organisms, which would further damage aquatic ecosystems. This study determined the concentrations of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and phthalate esters (PAEs) in both the sediment and the pore water from Lake Chaohu and calculated the sediment – pore water partition coefficient (KD) and the organic carbon normalized sediment – pore water partition coefficient (KOC), and explored the effects of particle size, organic matter content, and parallel factor fluorescent organic matter (PARAFAC-FOM) on KD. The results showed that log KD values of PAHs (2.61–3.94) and OCPs (1.75–3.05) were significantly lower than that of PAEs (4.13–5.05) (p < 0.05). The chemicals were ranked by log KOC as follows: PAEs (6.05–6.94) > PAHs (4.61–5.86) > OCPs (3.62–4.97). A modified MCI model can predict KOC values in a range of log 1.5 at a higher frequency, especially for PAEs. The significantly positive correlation between KOC and the octanol – water partition coefficient (KOW) were observed for PAHs and OCPs. However, significant correlation was found for PAEs only when excluding PAEs with lower KOW. Sediments with smaller particle sizes (clay and silt) and their organic matter would affect distributions of PAHs and OCPs between the sediment and the pore water. Protein-like fluorescent organic matter (C2) was associated with the KD of PAEs. Furthermore, the partitioning of PARAFAC-FOM between the sediment and the pore water could potentially affect the distribution of organic pollutants. The partitioning mechanism of PAEs between the sediment and the pore water might be different from that of PAHs and OCPs, as indicated by their associations with influencing factors and KOW.
Show more [+] Less [-]In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern
2016
Arini, Adeline | Cavallin, Jenna E. | Berninger, Jason P. | Marfil-Vega, Ruth | Mills, Marc | Villeneuve, Daniel L. | Basu, Niladri
Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-d-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24–42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24–54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences.
Show more [+] Less [-]Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system
2016
Yan, Renhua | Huang, Jiacong | Li, Lingling | Gao, Junfeng
Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater–unsaturated zone coupling, groundwater–surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that Kuptake, cQ2, cW1, and cQ1 exert a significant effect on the modeled results, whereas KresuspensionMax, Ksettling, and Kmineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime.
Show more [+] Less [-]Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis
2016
Elliot, Alex J. | Smith, Sue | Dobney, Alec | Thornes, John | Smith, Gillian E. | Vardoulakis, Sotiris
There is an increasing body of evidence illustrating the negative health effects of air pollution including increased risk of respiratory, cardiac and other morbid conditions. During March and April 2014 there were two air pollution episodes in England that occurred in close succession. We used national real-time syndromic surveillance systems, including general practitioner (GP) consultations, emergency department attendances, telehealth calls and ambulance dispatch calls to further understand the impact of these short term acute air pollution periods on the health seeking behaviour of the general public. Each air pollution period was comparable with respect to particulate matter concentrations (PM10 and PM2.5), however, the second period was longer in duration (6 days vs 3 days) and meteorologically driven ‘Sahara dust’ contributed to the pollution. Health surveillance data revealed a greater impact during the second period, with GP consultations, emergency department attendances and telehealth (NHS 111) calls increasing for asthma, wheeze and difficulty breathing indicators, particularly in patients aged 15–64 years. Across regions of England there was good agreement between air quality levels and health care seeking behaviour. The results further demonstrate the acute impact of short term air pollution episodes on public health and also illustrate the potential role of mass media reporting in escalating health care seeking behaviour.
Show more [+] Less [-]Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters
2016
Toli, Aikaterini | Chalastara, Konstantina | Mystrioti, Christiana | Xenidis, Anthimos | Papassiopi, Nymphodora
The objective of present study was to obtain the fixation of nano zero valent iron (nZVI) particles on a permeable matrix and evaluate the performance of this composite material for the removal of Cr(VI) from contaminated waters. The experiments were carried out using the cationic resin Dowex 50WX2 as porous support of the iron nanoparticles. The work was carried out in two phases. The first phase involved the fixation of nZVI on the resin matrix. The resin granules were initially mixed with a FeCl3 solution to obtain the adsorption of Fe(III). Then the Fe(III) loaded resin (RFe) was treated with polyphenol solutions to obtain the reduction of Fe(III) to the elemental state. Two polyphenol solutions were tested as reductants, i.e. green tea extract and gallic acid. Green tea was found to be inefficient, probably due to the relatively big size of the contained polyphenol molecules, but gallic acid molecules were able to reach adsorbed Fe(III) and reduce the cations to the elemental state. The second phase was focused on the investigation of Cr(VI) reduction kinetics using the nanoiron loaded resins (R-nFe). It was found that the reduction follows a kinetic law of first order with respect to Cr(VI) and to the embedded nanoiron. Compared to other similar products, this composite material was found to have comparable performance regarding reaction rates and higher degree of iron utilization. Namely the rate constant for the reduction of Cr(VI), in the presence of 1 mM nZVI, was equivalent to 1.4 h of half-life time at pH 3.2 and increased to 24 h at pH 8.5. The degree of iron utilization was as high as 0.8 mol of reduced Cr(VI) per mole of iron. It was also found that this composite material can be easily regenerated and reused for Cr(VI) reduction without significant loss of efficiency.
Show more [+] Less [-]Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment
2016
Reijonen, Inka | Metzler, Martina | Hartikainen, Helinä
The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0–6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V.
Show more [+] Less [-]Effects of dietary lead exposure on vitamin levels in great tit nestlings – An experimental manipulation
2016
Ruiz, Sandra | Espín, Silvia | Rainio, Miia | Ruuskanen, Suvi | Salminen, Juha-Pekka | Lilley, Thomas M. | Eeva, Tapio
Exposure to metal pollution negatively affects animal physiology, including nutrient metabolism, but in the wild an effect can seldom be attributed to a single metal. Moreover, little is known about how the metabolism of vitamins, essential micronutrients for developing juveniles, is affected by toxic metals. Therefore we experimentally investigated the effects of lead (Pb), a widespread toxic metal, on four fat-soluble vitamins A (total and retinol), D3, E (total and α-tocopherol) and K and carotenoids (lutein, zeaxanthin and unidentified) in great tit (Parus major) nestlings. In addition to a control group where no Pb was provided, two Pb-dosed groups were compared to a metal exposed group in the vicinity of a Ni–Cu smelter. We examined whether Pb treatment affects vitamin homeostasis and how the response of Pb-treated birds relates to that of a population under industrial exposure of Pb and other metals. For this purpose, vitamin and carotenoid levels were quantified with UPLC-MS from plasma of 7 days-old nestlings. All metal exposed groups showed increased vitamin A and retinol levels. However, vitamin levels were not directly associated with fecal Pb levels, with the exception of retinol, which was positively correlated with fecal Pb. Alpha-tocopherol, lutein and zeaxanthin levels were positively associated with body mass and wing growth rate. To conclude, Pb exposure increased plasma vitamin A and retinol levels while the levels of other vitamins and carotenoids rather reflected secondary pollution effects via differences in habitat and diet quality at the smelter site. Our findings suggest Pb exposed nestlings may allocate the vitamins needed for growth and development to fight the physiological stress thus compromising their fitness.
Show more [+] Less [-]Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures
2016
Karamī, ʻAlī | Karbalaei, Samaneh | Zad Bagher, Fariba | Ismail, Amin | Simpson, Stuart L. | Courtenay, Simon C.
Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
Show more [+] Less [-]Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments
2016
Khan, Ali M. | Wick, Lukas Y. | Harms, Hauke | Thullner, Martin
Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates.
Show more [+] Less [-]Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis
2016
Pardo, Tania | Martínez-Fernández, Domingo | de la Fuente, Carlos | Clemente, Rafael | Komárek, Michael | Bernal, M Pilar
Wetland plants are considered as suitable biofilters for the removal of metal(loid)s and other contaminants from waters and wastewaters, due to their ability to accumulate and retain the contaminants in their roots. The iron plaque (IP) on the root surface influences the metal(loid)s retention processes. The stimulation of the IP development on roots of Phragmites australis by the external supply of a novel synthetic nanomaterial (nanomaghemite, nFe2O3) and FeSO4 (alone or in combination) was studied. An hydroponic experiment was carried out to evaluate the iron plaque formation after external iron addition, as well as their influence on arsenic immobilization capacity. Microscopic and spectroscopic techniques were utilized to assess the distribution of Fe and As in the roots. The addition of Fe stimulated the generation of the IP, especially when FeSO4 was involved. The nanoparticles alone were not efficient with regard to IP formation or As adsorption, even though they adhered to the root surface and did not enter into epithelial root cells. The combination of FeSO4 and nFe2O3 was the most effective treatment for improving the As removal capacity, and it seems to be an effective way to enhance the rhizofiltration potential of P. australis in As contaminated (waste)waters.
Show more [+] Less [-]