Refine search
Results 441-450 of 4,033
Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment
2016
Reijonen, Inka | Metzler, Martina | Hartikainen, Helinä
The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0–6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V.
Show more [+] Less [-]Effects of dietary lead exposure on vitamin levels in great tit nestlings – An experimental manipulation
2016
Ruiz, Sandra | Espín, Silvia | Rainio, Miia | Ruuskanen, Suvi | Salminen, Juha-Pekka | Lilley, Thomas M. | Eeva, Tapio
Exposure to metal pollution negatively affects animal physiology, including nutrient metabolism, but in the wild an effect can seldom be attributed to a single metal. Moreover, little is known about how the metabolism of vitamins, essential micronutrients for developing juveniles, is affected by toxic metals. Therefore we experimentally investigated the effects of lead (Pb), a widespread toxic metal, on four fat-soluble vitamins A (total and retinol), D3, E (total and α-tocopherol) and K and carotenoids (lutein, zeaxanthin and unidentified) in great tit (Parus major) nestlings. In addition to a control group where no Pb was provided, two Pb-dosed groups were compared to a metal exposed group in the vicinity of a Ni–Cu smelter. We examined whether Pb treatment affects vitamin homeostasis and how the response of Pb-treated birds relates to that of a population under industrial exposure of Pb and other metals. For this purpose, vitamin and carotenoid levels were quantified with UPLC-MS from plasma of 7 days-old nestlings. All metal exposed groups showed increased vitamin A and retinol levels. However, vitamin levels were not directly associated with fecal Pb levels, with the exception of retinol, which was positively correlated with fecal Pb. Alpha-tocopherol, lutein and zeaxanthin levels were positively associated with body mass and wing growth rate. To conclude, Pb exposure increased plasma vitamin A and retinol levels while the levels of other vitamins and carotenoids rather reflected secondary pollution effects via differences in habitat and diet quality at the smelter site. Our findings suggest Pb exposed nestlings may allocate the vitamins needed for growth and development to fight the physiological stress thus compromising their fitness.
Show more [+] Less [-]Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures
2016
Karamī, ʻAlī | Karbalaei, Samaneh | Zad Bagher, Fariba | Ismail, Amin | Simpson, Stuart L. | Courtenay, Simon C.
Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
Show more [+] Less [-]Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments
2016
Khan, Ali M. | Wick, Lukas Y. | Harms, Hauke | Thullner, Martin
Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates.
Show more [+] Less [-]Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis
2016
Pardo, Tania | Martínez-Fernández, Domingo | de la Fuente, Carlos | Clemente, Rafael | Komárek, Michael | Bernal, M Pilar
Wetland plants are considered as suitable biofilters for the removal of metal(loid)s and other contaminants from waters and wastewaters, due to their ability to accumulate and retain the contaminants in their roots. The iron plaque (IP) on the root surface influences the metal(loid)s retention processes. The stimulation of the IP development on roots of Phragmites australis by the external supply of a novel synthetic nanomaterial (nanomaghemite, nFe2O3) and FeSO4 (alone or in combination) was studied. An hydroponic experiment was carried out to evaluate the iron plaque formation after external iron addition, as well as their influence on arsenic immobilization capacity. Microscopic and spectroscopic techniques were utilized to assess the distribution of Fe and As in the roots. The addition of Fe stimulated the generation of the IP, especially when FeSO4 was involved. The nanoparticles alone were not efficient with regard to IP formation or As adsorption, even though they adhered to the root surface and did not enter into epithelial root cells. The combination of FeSO4 and nFe2O3 was the most effective treatment for improving the As removal capacity, and it seems to be an effective way to enhance the rhizofiltration potential of P. australis in As contaminated (waste)waters.
Show more [+] Less [-]Selection of an appropriate management strategy for contaminated sediment: A case study at a shallow contaminated harbour in Quebec, Canada
2016
Pourabadehei, Mehdi | Mulligan, Catherine N.
Harbours, as strategic places in tourism and transportation, are exposed to many sources of contamination. Assessing the quality of harbours sediment by guidelines and regulations does not reflect the actual level of contamination and the risk posed to aquatic ecosystems. Selection of an appropriate management technique for contaminated sediments in those strategic locations is crucial for the aquatic environment. The purpose of this study is to show that insufficient information, provided by sediment quality guidelines (SQGs) to identify the actual contaminants, could lead to a destructive or potentially ineffective decision for risk reduction in contaminated harbours. A comprehensive evaluation on physicochemical characteristics of sediment and water samples of a shallow harbour in St. Lawrence River was performed. Results of trace metal fractionation and risk assessment indicated that Cd and Pb were the contaminants that could pose a threat to aquatic ecosystem, although the SQG outcomes implied that Cu and Zn may cause an adverse effect on the benthic organisms. The results of multivariate statistical analysis demonstrated that the locations in the vicinity of the maintenance area contained the most contaminated sediment samples and require appropriate management. Antifouling paint particles and probably the runoff entering the harbour were the main sources of pollution. Among the diverse range of management strategies, the resuspension technique is suggested as a viable alternative in this specific case for shallow locations with contaminated sediments. A suitable management strategy could reduce the cost of remediation process by identifying the actual contaminated spots and also reduce the risk of remobilization of trace metals.
Show more [+] Less [-]Fate of radiolabeled C60 fullerenes in aged soils
2016
Navarro, Divina A. | Kookana, Rai S. | McLaughlin, Mike J. | Kirby, Jason K.
Fullerenes (e.g. C60, C70, etc.) present in soil may undergo changes in its retention with aging. In this study, the partitioning behavior of (14C)-C60 aged up to 12 weeks was investigated in biosolids-amended soil. Spiked samples were subjected to sequential partitioning using water, methanol, and toluene followed by total combustion of solids; the distribution of 14C across solvents and matrices were used to provide insights on C60 behavior. In most samples, 14C only partitioned in toluene with the remaining (non-extractable) activity detected in the solid phase. In all biosolids-amended soil samples, an increase in non-extractable 14C were observed for those exposed to light (vs dark) with the greatest difference observed in biosolids + sand samples. Possible processes that contribute to the observed 14C distribution, i.e. retention and potential transformation of C60, were discussed. Over-all, results suggest that environmental exposure to C60 and potentially transformed C60 species, as a result of their release from soils, is likely to be low.
Show more [+] Less [-]Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China
2016
Wang, Huanbo | Yang, Fumo | Shi, Guangming | Tian, Mi | Zhang, Leiming | Zhang, Liuyi | Fu, Chuan
To assess pollution levels of major inorganic nitrogen species and their atmospheric deposition input to sensitive ecosystems in Sichuan Basin, southwest China, ambient concentrations of oxidized (NOy ∼ NO2, HNO3, NO3−) and reduced (NHx = NH3, NH4+) nitrogen species were collected at two urban sites during four one-month periods, each in a different season from July 2014 to April 2015. Estimated annual mean concentration of NOy was 20.3 and 13.5 μg N m−3 in Chengdu and Wanzhou, respectively, and NHx was 16.9 and 13.6 μg N m−3, respectively. Back trajectory cluster analysis indicated that high levels of NOy and NHx in Chengdu were mainly caused by local emissions while those in Wanzhou were caused by both the local emissions and long-range transport of pollutants. On annual basis, NO2 contributed the most to NOy, followed by NO3− and HNO3, accounting for 87.5%, 10.5% and 2.0%, respectively, of NOy in Chengdu, and 91.4%, 6.9% and 1.7%, respectively, in Wanzhou. NH3 was the predominant contributor to NHx, contributing 65.6% and 72.2% in Chengdu and Wanzhou, respectively. Dry deposition fluxes were estimated using the inferential method with measured ambient concentrations and modelled dry deposition velocities. The total inorganic nitrogen dry deposition flux was estimated to be 21.4 and 8.5 kg N ha−1 yr−1, with 44.3% and 41.4% from NOy in Chengdu and Wanzhou, respectively. NO2 and NH3 each contributed about 80% of NOy and NHx dry deposition, respectively. Wet deposition was only collected in Wanzhou, where the annual wet deposition of NO3− and NH4+ was 4.5 and 15.7 kg N ha−1 yr−1, respectively. The total wet plus dry deposition was 28.7 kg N ha−1 yr−1 in Wanzhou with 72.2% from reduced nitrogen. Therefore, controlling NH3 emissions from agricultural, traffic, waste containers and sewage system sources would be effective to reduce the total nitrogen deposition in the Sichuan Basin area.
Show more [+] Less [-]Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro
2016
Zou, Yajuan | Jin, Chengyu | Su, Yue | Li, Jiaru | Zhu, Bangshang
When PM2.5 enters human bodies, the water soluble (WS-PM2.5) and insoluble components (WIS-PM2.5) of PM2.5 would interact with cells and cause adverse effects. However, the knowledge about the individual toxicity contribution of these two components is limited. In this study, the physiochemical properties of PM2.5 were well characterized. The toxic effects of WS-PM2.5 and WIS-PM2.5, which include the cell viability, cell membrane damage, reactive oxygen species (ROS) generation and morphological changes, were examined with human lung epithelial A549 cells in vitro. The results indicated that WS-PM2.5 could induce the early response of ROS generation, multiplied mitochondria and multi-lamellar bodies in A549 cells, which might cause cell damage through oxidative stress. Meanwhile, WIS-PM2.5 was predominantly associated with the cell membrane disruption, which might lead to the cell damage through cell-particle interactions. Moreover, the synergistic cytotoxic effects of WS-PM2.5 and WIS-PM2.5 were observed at longer exposure time. These findings demonstrate the different cytotoxicity mechanisms of WS-PM2.5 and WIS-PM2.5, which suggest that not only the size and dosage of PM2.5 but also the solubility of PM2.5 should be taken into consideration when evaluating the toxicity of PM2.5.
Show more [+] Less [-]Degradation and sorption of the fungicide tebuconazole in soils from golf greens
2016
Badawi, Nora | Rosenbom, Annette E. | Jensen, Anne M.D. | Sørensen, Sebastian R.
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines.
Show more [+] Less [-]