Refine search
Results 441-450 of 4,298
Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars
2017
Wang, Fei | Sun, Hongwen | Ren, Xinhao | Liu, Yarui | Zhu, Hongkai | Zhang, Peng | Ren, Chao
The effects of humic acid (HA) and heavy metals (Cu²⁺ and Ag⁺) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag⁺ led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist.
Show more [+] Less [-]Biodegradation of polyester polyurethane by Aspergillus tubingensis
2017
Khan, Sehroon | Nadir, Sadia | Shah, Zia Ullah | Shah, Aamer Ali | Karunarathna, Samantha C. | Xu, Jianchu | Khān, Āfsar | Munir, Shahzad | Hasan, Fariha
The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.
Show more [+] Less [-]Maternal serum lead level during pregnancy is positively correlated with risk of preterm birth in a Chinese population
2017
Li, Jun | Wang, Hua | Hao, Jia-Hu | Chen, Yuan-Hua | Liu, Lu | Yu, Zhen | Fu, Lin | Tao, Fang-Biao | Xu, De-Xiang
Lead (Pb) is a well-known developmental toxicant. The aim of the present study was to analyze the association between maternal serum Pb level and risk of preterm birth in a population-based birth cohort study. The present study analyzed a sub-study of the China-Anhui Birth Cohort that recruited 3125 eligible mother-and-singleton-offspring pairs. Maternal serum Pb level was measured by graphite furnace atomic absorption spectrometry. All subjects were classified into three groups by tertile division according to serum Pb level: Low-Pb (L-Pb, <1.18 μg/dl), Medium-Pb (M-Pb, 1.18–1.70 μg/dl), and High-Pb (H-Pb, ≥1.71 μg/dl). The rate of preterm birth was 2.8% among subjects with L-Pb, 6.1% among subjects with M-Pb, and 8.1% among subjects with H-Pb, respectively. After controlling confounding factors, the adjusted OR for preterm birth was 2.33 (95%CI: 1.49, 3.65) among subjects with M-Pb and 3.09 (95%CI: 2.01, 4.76) among subjects with H-Pb. Of interest, maternal Pb exposure in early gestational stage than in middle gestational stage was more susceptible to preterm birth. Moreover, maternal serum Pb level was only associated with increased risk of late preterm birth. The present study provides evidence that maternal serum Pb level during pregnancy is positively associated with risk of preterm birth in a Chinese population.
Show more [+] Less [-]Quantification and speciation of volatile fatty acids in the aqueous phase
2017
Lee, Jechan | Kim, Jieun | Oh, Jeong-Ik | Lee, Sang Ryong | Kwon, Eilhann E.
This study lays great emphasis on establishing a reliable analytical platform to quantify and specify volatile fatty acids (VFAs) in the aqueous phase by derivatizing VFAs into their corresponding alkyl esters via thermally-induced rapid esterification (only 10 s reaction time). To this end, reaction conditions for the thermally-induced rapid esterification are optimized. A volumetric ratio of 0.5 at 400 °C for VFA/methanol is identified as the optimal reaction conditions to give ∼90% volatile fatty acid methyl ester (VFAME) yield. To maintain a high yield of VFAMEs, this study suggests that dilution of the sample to an optimum concentration (∼500 ppm for each VFA) is required. Derivatization of VFAs into VFAMEs via the thermally-induced rapid esterification is more reliable to quantify and specify VFAs in the aqueous phase than conventional colorimetric method.
Show more [+] Less [-]Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans
2017
Alirzayeva, Esmira | Neumann, Günter | Horst, Walter | Allahverdiyeva, Yagut | Specht, Andre | Alizade, Valida
Artemisia fragrans is a plant species with ability of growing on heavy metal-polluted soils. Ecotypes of this species naturally growing in polluted areas can accumulate and tolerate different amounts of heavy metals (HM), depending on soil contamination level at their origin. Heavy metal tolerance of various ecotypes collected from contaminated (AP, SP) and non-contaminated (BG) sites was compared by cultivation on a highly HM-contaminated river sediment and a non-contaminated agricultural control soil.Tissue-specific HM distribution was analyzed by laser ablation-inductively-coupled plasma-mass spectroscopy (LA-ICP-MS) and photosynthetic activity by non-invasive monitoring of chlorophyll fluorescence.Plant-mineral analysis did not reveal ecotype-differences in concentrations of Cd, Zn, Cu in shoots of Artemisia plants, suggesting no differential expression of root uptake or root to shoot translocation of HM. There was also no detectable rhizosphere effect on HM concentrations on the contaminated soil. However, despite high soil contaminations, all ecotypes accumulated Zn only in the concentration range of generally reported for normal growth of plants, while Cu and Cd concentrations were close to or even higher than the toxicity level for most plants. As a visible symptom of differences in HM tolerance, only the AP ecotype was able to enter the generative phase to complete its life cycle. Analysis of tissue-specific metal distribution revealed significantly lower concentrations of Cd in the leaf mesophyll of this ecotype, accumulating Cd mainly in the leaf petioles. A similar mesophyll exclusion was detectable also for Cu, although not associated with preferential accumulation in the leaf petioles. However, high mesophyll concentrations of Cd and Cu in the SP and BG ecotypes were associated with disturbances of the photosynthetic activity.The findings demonstrate differential expression of HM exclusion strategies in Artemisia ecotypes and suggest Cd and Cu exclusion from the photosynthetically active tissues as a major tolerance mechanism of the AP ecotype.
Show more [+] Less [-]Does long term low impact stress cause population extinction?
2017
Amorim, M.J.B. | Pereira, C. | Soares, A.M.V.M. | Scott-Fordsmand, J.J.
This study assessed and monitored 40 consecutive reproduction tests - multigenerational (MG) - of continuous exposure to Cd (at 2 reproduction Effect Concentrations (EC): EC10 and EC50) using the standard soil invertebrate Folsomia candida, in total 3.5 years of data were collected. Endpoints included survival, reproduction, size and metallothionein (MTc) gene expression. Further, to investigate adaptation to the toxicant, additional standard toxicity experiments were performed with the MG organisms of F6, F10, F26, F34 and F40 generations of exposure. Exposure to Cd EC10 caused population extinction after one year, whereas populations survived exposure to Cd EC50. Cd induced the up-regulation of the MTc gene, this being higher for the higher Cd concentration, which may have promoted the increased tolerance at the EC50. Moreover, EC10 induced a shift towards organisms of smaller size (positive skew), whereas EC50 induced a shift towards larger size (negative skew). Size distribution shifts could be an effect predictor. Sensitivity increased up to F10, but this was reverted to values similar to F0 in the next generations. The maximum Cd tolerance limits of F. candida increased for Cd EC50 MG. The consequences for risk assessment are discussed.
Show more [+] Less [-]Transgenerational endpoints provide increased sensitivity and insight into multigenerational responses of Lymnaea stagnalis exposed to cadmium
2017
Reátegui-Zirena, Evelyn G. | Fidder, Bridgette N. | Olson, Adric D. | Dawson, Daniel E. | Bilbo, Thomas R. | Salice, Christopher J.
Ecotoxicology provides data to inform environmental management. Many testing protocols do not consider offspring fitness and toxicant sensitivity. Cadmium (Cd) is a well-studied and ubiquitous toxicant but little is known about the effects on offspring of exposed parents (transgenerational effects). This study had three objectives: to identify endpoints related to offspring performance; to determine whether parental effects would manifest as a change in Cd tolerance in offspring and how parental exposure duration influenced the manifestation of parental effects. Adult snails were exposed to Cd 0, 25, 50, 100, 200 and 400 μg Cd/L for eight weeks. There were effects on adult endpoints (e.g., growth, reproduction) but only at the highest concentrations (>100 μg/L). Alternatively, we observed significant transgenerational effects at all Cd concentrations. Surprisingly, we found increased Cd tolerance in hatchlings from all parental Cd exposure concentrations even though eggs and hatchlings were in Cd-free conditions for 6 weeks. Explicit consideration of offspring performance adds value to current toxicity testing protocols. Parental exposure duration has important implications for offspring effects and that contaminant concentrations that are not directly toxic to parents can cause transgenerational changes in resistance that have significant implications for toxicity testing and adaptive responses.
Show more [+] Less [-]Probabilistic forecasting for extreme NO2 pollution episodes
2017
Aznarte, José L.
In this study, we investigate the convenience of quantile regression to predict extreme concentrations of NO2. Contrarily to the usual point-forecasting, where a single value is forecast for each horizon, probabilistic forecasting through quantile regression allows for the prediction of the full probability distribution, which in turn allows to build models specifically fit for the tails of this distribution.Using data from the city of Madrid, including NO2 concentrations as well as meteorological measures, we build models that predict extreme NO2 concentrations, outperforming point-forecasting alternatives, and we prove that the predictions are accurate, reliable and sharp. Besides, we study the relative importance of the independent variables involved, and show how the important variables for the median quantile are different than those important for the upper quantiles. Furthermore, we present a method to compute the probability of exceedance of thresholds, which is a simple and comprehensible manner to present probabilistic forecasts maximizing their usefulness.
Show more [+] Less [-]Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region
2017
Lau, Yuk King | Du, Qingyun | Wang, Qi | Yu, Huanyun | Liu, Jianfeng | Tian, Yu | Chang, Chunying | Lei, Jing
The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management.
Show more [+] Less [-]Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy
2017
Qin, Hai-Bo | Zhu, Jian-Ming | Lin, Zhi-Qing | Xu, Wen-Po | Tan, De-Can | Zheng, Li-Rong | Takahashi, Yoshio
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56–81%) and lesser Se(IV) (19–44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69–73%) > upland soil (56–63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas.
Show more [+] Less [-]