Refine search
Results 441-450 of 4,322
Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts
2017
Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L−1) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks.
Show more [+] Less [-]Detoxification of hexavalent chromate by growing Paecilomyces lilacinus XLA
2017
Xu, Xingjian | Xia, Lu | Chen, Wenli | Huang, Qiaoyun
In the study, the capability of Paecilomyces lilacinus XLA (CCTCC: M2012135) to reduce Cr6+ and its main antagonistic mechanisms to Cr6+ were experimentally evaluated. Activated growing fungus XLA efficiently reduced over 90% Cr6+ in the media with Cr6+ concentration below 100 mg L−1 at pH 6 after 14 days. After 1-day exposure to 100 mg L−1 Cr6+, nearly 50% of Cr6+ was reduced. Moreover, SO42− stimulated Cr6+ reduction, whereas other interferential ions inhibited Cr6+ reduction. The interaction mechanisms between XLA and Cr6+ mainly involve biotransformation, biosorption, and bioaccumulation, as detected by electron microscopy and chemical methods. The lower concentrations of Cr6+ (5 and 50 mg L−1) stimulated the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in XLA, respectively, but the higher concentration of Cr6+ (150 mg L−1) decreased the enzymatic activities and GSH concentration. The results implied that SOD, CAT and GSH were defensive guards to the oxidant stress produced by Cr6+. All these extracellular/intracellular defense systems endowed XLA with the ability to resist and detoxify Cr6+ by transforming its valent species. The fungus XLA could efficiently reduce Cr6+ under different environmental conditions (pH, interferential ions, and concentration). Moreover, XLA could endure the high concentration of Cr6+ probably due to its high biotransformation capability of Cr6+ and intracellular antioxidant systems for the detoxification of ROS generated by external Cr6+. All these results suggested that the fungus XLA can be applied to remediation of Cr6+-contaminated environments.
Show more [+] Less [-]Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter
2017
Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m−3) was much higher than that in the particle phase (62 ± 8 pg m−3) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (−2.34, −1.25, and −0.15 kJ mol−1 at 293, 303, and 313 K, respectively), ΔH° (−34.34 kJ mol−1), and ΔS° (−109.22 J mol−1 K−1) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process.
Show more [+] Less [-]Impacts of regional transport on black carbon in Huairou, Beijing, China
2017
The 22ⁿᵈ Asia-Pacific Economic Cooperation (APEC) Conference was held near Yanqi Lake, Huairou, in Beijing, China during November 10-11, 2014. To guarantee haze-free days during the APEC Conference, the Beijing government and the governments of the surrounding provinces implemented a series of controls. Three months of Aethalometer 880 nm black carbon (BC) measurements were examined to understand the hourly fluctuations in BC concentrations that resulted from emission controls and meteorology changes. Measurements were collected at the University of Chinese Academy of Sciences near the APEC Conference site and in Central Beijing at the Institute of Remote Sensing and Digital Earth of the Chinese Academy of Sciences. Synoptic conditions are successfully represented through analysis of backward trajectories in six cluster groups. The clusters are identified based on air mass transport from various areas such as Inner Mongolia, Russia, three northeastern provinces, and Hebei industrial areas, to the measurement sites. Air pollution control measures during the APEC Conference significantly reduced BC at the conference site (Huairou) and in Central Beijing, with greater reductions in BC concentrations at the conference site than in Central Beijing. The highest BC concentrations in Huairou were associated with air masses originating from Central Beijing rather than from the Hebei industrial region. The success of the control measures implemented in Beijing and the surrounding regions demonstrates that BC concentrations can be effectively reduced to protect human health and mitigate regional climate forcing. This study also demonstrates the need for regional strategies to reduce BC concentrations, since urban areas like Beijing are sources as well as downwind receptors of emissions.
Show more [+] Less [-]Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity
2017
(Maurizio),
Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 μm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.
Show more [+] Less [-]Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers
2017
Rossi, Lorenzo | Zhang, Weilan | Ma, Xingmao
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg−1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture.
Show more [+] Less [-]Crotonaldehyde induces autophagy-mediated cytotoxicity in human bronchial epithelial cells via PI3K, AMPK and MAPK pathways
2017
Wang, Limeng | Li, Xiang | Yang, Zhihua | Pan, Xiujie | Liu, Xingyu | Zhu, Maoxiang | Xie, Jianping
Crotonaldehyde is an ubiquitous hazardous pollutant in the environment which can be produced naturally, artificially and endogenously. Acute exposure of crotonaldehyde was reported to induce severe lung injury in humans and experimental animals. However, the exact toxicity mechanisms of crotonaldehyde in organisms have not been fully explored. In the present study, we explored the role autophagy played in the cytotoxicity induced by crotonaldehyde in human bronchial epithelial cells (BEAS-2B), and the pathways that mediated autophagy, including the phosphatidylinositol 3-kinase (PI3K) pathway, the AMP-activated protein kinase (AMPK) pathway and the mitogen-activated protein kinase (MAPK) pathways, were examined and validated. We found that crotonaldehyde induced cytotoxicity and autophagy simultaneously in BEAS-2B cells, and blockage of autophagic flux significantly elevated the viability of BEAS-2B exposed to high concentrations of crotonaldehyde. Crotonaldehyde down-regulated the activity of PI3K pathway, and elevated the activities of AMPK and MAPK pathways. Pretreatment of specific agonist or antagonist of these pathways could inhibit autophagy and partly improve the viability. These results suggested that acute exposure of crotonaldehyde induced cell death mediated by autophagy, which might be helpful to elucidate the toxicity mechanisms of crotonaldehyde and contribute to environmental and human health risk assessment.
Show more [+] Less [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Show more [+] Less [-]A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world's major site for recycling transformers
2017
Man, Yu Bon | Chow, Ka Lai | Xing, Guan Hua | Chan, Janet Kit Yan | Wu, Sheng Chun | Wong, Ming Hung
Our early study reported an extraordinarily high Estimated Daily Intake (EDI) of PCBs of lactating mothers from Taizhou, Zhejiang Province, China (based on a food consumption survey and food basket analysis). The EDI well exceeded the intake limit stipulated by FAO/WHO 70 pg TEQ/kg body weight (bw)/month. The present pilot study provided further information on PCBs body burden in lactating mothers of Taizhou. The total PCBs detected in human milk, placenta and hair samples of these lactating mothers were 363 ng/g lipid, 224 ng/g lipid, and 386 ng/g dry wt. Respectively, three times higher than those samples collected from the reference site (Lin'an). Compared with the previous reported values in the 3rd WHO coordinated study, Taizhou topped the list of 32 countries/regions with regards to WHO-PCB-TEQ values of milk samples, which could be attributed to the relatively higher level of PCB-126 derived from electronic waste. In addition, the corresponding EDI of PCBs of Taizhou mothers (12.9 pg WHO-PCB-TEQ/kg bw/day) and infants (438 pg WHO-PCB-TEQ/kg) were derived from individual congener levels in human milk. The results were also higher than the tolerable daily intakes recommended by WHO (1–4 pg WHO-TEQ/kg bw/day) by 3 and 110 times, for mothers and infants, respectively. A more intensive epidemiological study on the potential health effects of e-waste recycling activities affecting both workers and residents seems to be of top priority, based on findings of this pilot study.
Show more [+] Less [-]Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea
2017
Alomar, Carme | Deudero, Salud
Microplastic (<5 mm) ingestion has been recorded in Galeus melastomus, the blackmouth catshark, around the Balearic Islands. In total 125 individuals were analyzed for microplastic ingestion. Results have shown that 16.80% of the specimens had ingested a mean value of 0.34 ± 0.07 microplastics/individual. Stomach fullness index ranged from 0.86 to 38.89% and regression analyses showed that fuller stomachs contained more microplastics. A higher quantity of filament type microplastics were identified compared to granular or hard plastic type. No significant differences were given between ingestion values of two locations over the continental shelf providing further evidence of the ubiquitous distribution of microplastics. The findings in this study reflect the availability of this man made contaminant to marine species in seafloor habitats. Based on results from this study, data on microplastic ingestion could be used to study trends in the amount and composition of litter ingested by marine animals in accordance with descriptor 10 of the Marine Strategy Framework Directive.
Show more [+] Less [-]