Refine search
Results 451-460 of 6,473
Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes
2020
Weber, Collin Joel | Opp, Christian
Plastic, and especially microplastic, contamination of soils has become a novel research field. After the detection of microplastics in soils, spatial distribution and dynamics are still unknown. However, the potential risks associated with plastic particles in soils cannot be sufficiently assessed without knowledge about the spatial distribution of these anthropogenic materials. Based on a spatial research approach, including soil surveys, this study quantified the mesoplastic (MEP, > 5.0 mm) and coarse microplastics (CMP, 2.0–5.0 mm) content of twelve floodplain soils. At four transects in the catchment area of the Lahn river (Germany), soils down to a depth of 2 m were examined for plastic content for the first time. MEP and CMP were detected through visual examination after sample preprocessing and ATR-FTIR analyses. Average MEP and CMP concentrations range between 2.06 kg⁻¹ (±1.55 kg⁻¹) and 1.88 kg⁻¹ (±1.49 kg⁻¹) with maximal values of 5.37 MEP kg⁻¹ to 8.59 CMP kg⁻¹. Plastic particles are heterogeneously distributed in samples. Both plastic size classes occur more frequently in topsoils than in soil layers deeper than 30 cm. The maximal depth of CMP occurrence lies between 75 and 100 cm. Most common CMP polymer type was PE-LD, followed by PP and PA. MEP and CMP particles occur frequently at near channel sides and more often on riparian strips or grassland than on farmland. Vertical distribution of CMP indicates anthropogenic relocation in topsoils and additional deep displacement through natural processes like preferential flow paths or bioturbation. By comparing sedimentation rates of the river with the maximum age of plastic particles, sedimentation as a deposition process of plastic in floodplains becomes probable. From our findings, it can be concluded that an overall widespread but spatial heterogenous contamination occurs in floodplain soils. Additionally, a complex plastic source pattern seems to appear in floodplain areas.
Show more [+] Less [-]Ambient PM2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy
2020
Zhang, Yujuan | Wang, Jianmei | Gong, Xian | Chen, Li | Zhang, Bumei | Wang, Qina | Han, Bin | Zhang, Nan | Xue, Fengxia | Vedal, Sverre | Bai, Zhipeng
Evidence for effects of PM₂.₅ on systemic oxidative stress in pregnant women is limited, especially in early pregnancy. To estimate the associations between ambient PM₂.₅ exposures and biomarkers of lipid peroxidation and total antioxidant capacity (T-AOC) in women with normal early pregnancy (NEP) and women with clinically recognized early pregnancy loss (CREPL), 206 early pregnant women who had measurements of serum malondialdehyde (MDA) and T-AOC were recruited from a larger case-control study in Tianjin, China from December 2017 to July 2018. Ambient PM₂.₅ concentrations of eight single-day lags exposure time windows before blood collection at the women’s residential addresses were estimated using temporally-adjusted land use regression models. Effects of PM₂.₅ exposures on percentage change in the biomarkers were estimated using multivariable linear regression models adjusted for month, temperature, relative humidity, gestational age and other covariates. Unconstrained distributed lag models were used to estimate net cumulative effects. Increased serum MDA and T-AOC were significantly associated with increases in PM₂.₅ at several lag exposure time windows in both groups. The net effects of each interquartile range increase in PM₂.₅ over the preceding 8 days on MDA were significantly higher (p < 0.001) in CREPL [52% (95% CI: 41%, 62%)] than NEP [22% (95% CI: 9%, 36%)] women. Net effects of each interquartile range increase in PM₂.₅ over the preceding 5 days on T-AOC were significantly lower (p = 0.010) in CREPL [14% (95% CI: 9%, 19%)] than NEP [24% (95% CI: 18%, 29%)] women. Exposure to ambient PM₂.₅ may induce systemic lipid peroxidation and antioxidant response in early pregnant women. More severe lipid peroxidation and insufficient antioxidant capacity associated with PM₂.₅ was found in CREPL women than NEP women. Future studies should focus on mechanisms of individual susceptibility and interventions to reduce PM₂.₅-related oxidative stress in the first trimester.
Show more [+] Less [-]Influence of Microcystis sp. and freshwater algae on pH: Changes in their growth associated with sediment
2020
Acuña-Alonso, Carolina | Lorenzo, Olalla | Álvarez, Xana | Cancela, Ángeles | Valero, Enrique | Sanchez, Angel
Samples from two reservoirs with eutrophication problems, located in Pontevedra and Ourense (Northwestern Spain), were cultured, along with a third crop from a reservoir with no problems detected in Ourense (Northwestern Spain). The samples were grown under the same conditions (with an average temperature of 21 ± 2 °C, and a 3000 lux light intensity) in triplicate, and their growth, absorbance and pH were studied. High correlation values were obtained for pH and cellular growth (R² ≥ 95%). The water from Salas showed the greatest microalgal growth (0.15 × 10⁶ cells/ml to 31.70 × 10⁶ cells/ml of Microcystis sp. for the last day of culturing) and the greatest increase in pH (5.72–9.02). In all the cultures studied here, the main species that reproduced was Microcystis sp., which can produce neurotoxins and hepatotoxins. In addition, water samples were cultured with sediments of their own reservoir and with others to observe their evolution. The sediments studied in this case were rich in biotites, which can lead phosphate to be a limiting factor for phytoplankton due to the formation and sedimentation of insoluble salts of ferric phosphate. In crops grown with sediments from the Salas reservoir, actinobacteria developed which can inhibit microalgal growth. The study of the growth of cyanobacteria and possible methods of inhibiting them directly concerns the quality of water and its ecosystems, avoiding pollution and impact on ecosystems.
Show more [+] Less [-]Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil
2020
Khan, Amir Zeb | K̲h̲ān, Sardār | Ayaz, Tehreem | Brusseau, Mark L. | Khan, Muhammad Amjad | Nawab, Javed | Muhammad, Said
As a result of metal mining activities in Pakistan, toxic heavy metals (HMs) such as chromium (Cr) and lead (Pb) often enter the soil ecosystem, accumulate in food crops and cause serious human health and environmental issues. Therefore, this study examined the efficacy of biochar for contaminated soil remediation. Poplar wood biochar (PWB) and sugarcane bagasse biochar (SCBB) were amended to mine-contaminated agricultural soil at 3% and 7% (wt/wt) application rates. Lactuca sativa (Lettuce) was cultivated in these soils in a greenhouse, and uptake of HMs (Cr and Pb) as well as biomass produced were measured. Subsequently, health risks were estimated from uptake data. When amended at 7%, both biochars significantly (P<0.01) reduced plant uptake of Cr and Pb in amended soil with significant (P<0.01) increase in biomass of lettuce as compared to the control. Risk assessment results showed that both biochars decreased the daily intake of metals (DIM) and associated health risk due to consumption of lettuce as compared to the control. The Pb human health risk index (HRI) for adults and children significantly (P<0.01) decreased with sugarcane bagasse biochar applied at 7% rate relative to other treatments (including the control). Relative to controls, the SCBB and PWB reduced Cr and Pb uptake in lettuce by 69%, 73.7%, respectively, and Pb by 57% and 47.4%, respectively. For both amendments, HRI values for Cr were within safe limits for adults and children. HRI values for Pb were not within safe limits except for the sugarcane bagasse biochar applied at 7%. Results of the study indicated that application of SCBB at 7% rate to mine impacted agricultural soil effectively increased plant biomass and reduced bioaccumulation, DIM and associated HRI of Cr and Pb as compared to other treatments and the control.
Show more [+] Less [-]Surface nitrous oxide (N2O) concentrations and fluxes from different rivers draining contrasting landscapes: Spatio-temporal variability, controls, and implications based on IPCC emission factor
2020
Zhang, Wangshou | Li, Hengpeng | Xiao, Qitao | Jiang, Sanyuan | Li, Xinyan
Increasing indirect nitrous oxide (N₂O) emission from river networks as a result of enhanced human activities on landscapes has become a global issue, as N₂O has been widely recognized as an important ozone-depleting greenhouse gas. However, indirect N₂O emissions from different rivers, particularly for those that drain completely different landscapes, are poorly understood. Here, we investigated the spatial-temporal variability of N₂O emissions among the different rivers in the Chaohu Lake Basin of Eastern China. Our results showed that river reaches in urban watersheds are the hotspots of N₂O production, with a mean N₂O concentration of ∼410 nmol L⁻¹, which is 9–18 times greater than those mainly draining forested (23 nmol L⁻¹), agricultural (42 nmol L⁻¹) and mixed (45 nmol L⁻¹) landscapes. Riverine dissolved N₂O was generally supersaturated with respect to the atmosphere. Such N₂O saturation can best be explained by nitrogen availability, except for those in the forested watersheds, where dissolved oxygen is thought to be the primary predictor. The estimated N₂O fluxes in urban rivers reached ∼471 μmol m⁻² d⁻¹, a value of ∼22, 13, and 11 times that in forested, agricultural and mixed watersheds, respectively. Averaged riverine N₂O emission factors (EF₅ᵣ) of the forested, agricultural, urban and mixed watersheds were 0.066%, 0.12%, 0.95% and 0.16%, respectively, showing different deviations from the default EF₅ᵣ that released by IPCC in 2019. This points to a need for more field measurements with wider spatial coverage and finer frequency to further refine the EF₅ᵣ and to better reveal the mechanisms behind indirect N₂O emissions as influenced by watershed landscapes.
Show more [+] Less [-]Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk
2020
Xu, Xiaohang | Han, Jialiang | Pang, Jian | Wang, Xun | Lin, Yan | Wang, Yajie | Qiu, Guangle
China is the largest rice producer and consumer in the world, and mercury (Hg) levels, particularly methylmercury (MeHg), in rice and health exposure risks are public concerns. Total Hg (THg) and MeHg levels in 767 (domestic = 709 and abroad = 58) Chinese commercial rice were investigated to evaluate Hg pollution level, dietary exposures and risks of IHg and MeHg. The mean rice THg and MeHg levels were 3.97 ± 2.33 μg/kg and 1.37 ± 1.18 μg/kg, respectively. The highest daily intake of MeHg and IHg were obtained in younger groups, accounted for 6% of the reference dose-0.1 μg/kg bw/day for MeHg, 0.3% of the provisional tolerance week intake-0.571 μg/kg bw/day for IHg. Residents in Central China and Southern China meet the highest rice Hg exposure, which were more than 7 times of those in Northwest China. Lower concentrations than earlier studies were observed along the implementations of strict policies since 2007. This may indicate that a declining temporal trend of Hg in Chinese grown rice and associated exposures could be obtained with the implementations of strict policies. Though there exist Hg pollution in commercial rice, Hg levels in Chinese commercial rice is generally safe compared with Hg polluted sites. Populations dwelling in China have relatively a quite low and safe MeHg and IHg exposure via the intake of commercial rice. Strict policies contributed to the decrease in THg and MeHg levels in Chinese-grown rice. More attention should be paid to younger groups.
Show more [+] Less [-]Occurrence, behavior, and fate of organophosphate esters (OPEs) in subtropical paddy field environment: A case study in Nanning City of South China
2020
Zhang, Zhengen | Lin, Guolin | Lin, Tian | Zhang, Ruijie | Jin, Lanshu | Di, Yali
Occurrence, behavior, and fate of 11 OPEs in multiple environmental matrices, which include air, rainwater, dustfall, paddy soil, irrigation water, and rice plants from nine subtropical paddy fields of South China, were investigated. The total concentrations of 11 OPEs (∑₁₁OPEs) in all matrices are generally higher in the urban areas than in rural areas, and they are higher in summer than in fall. However, both urban and rural areas showed a similar composition profile of OPEs, indicating that the OPEs come from similar sources in the two areas. Except for irrigation water, significant positive correlations of ∑₁₁OPEs were observed between air and the other five matrices. The exchange and partition of OPEs among air, soil, and water demonstrate that most of OPEs were transferred from air into water and soil, and from water into soil. Thus, the air may be an important source of OPEs in the paddy fields, and the soil may act as a principal environmental reservoir of OPEs. The contribution of air-soil exchange, atmospheric deposition (rainwater plus dustfall), and irrigation water to the total input fluxes of OPEs (2100 ± 980 ng/m²/day) reached an average of 19%, 38% (37% + 1%), and 43%, respectively. The water (rainwater plus irrigation water) is the primary medium transferring the OPEs into the paddy fields and contributed to the input flux by 80%. Output flux of OPEs via mature rice plants was about 220 μg/m², 2% of which were presented in rice, and the remaining 98% may be re-released into the environment through the pathway of straw turnover or burning. Dietary exposure via rice was much higher than inhalation exposure, dust ingestion, and dermal absorption via dust. However, no data shows that all of the intakes via the four exposure pathways could cause the risks to human health at present.
Show more [+] Less [-]Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior
2020
Zheng, Qian | Li, Jun | Wang, Yan | Lin, Tian | Xu, Yue | Zhong, Guangcai | Bing, Haijian | Luo, Chunling | Zhang, Gan
We investigated the levels and distributions of organochlorine pesticides (OCPs) in 159 background soil samples collected from 30 forested mountain sites across China. The sum of DDT was the most abundant OCP, with the concentrations of 0.197–207 ng/g and 0.033–122 ng/g in the O-horizon and A-horizon, respectively. High concentrations of OCPs usually occur near agricultural regions or high consumption areas. The spatial distribution was mainly influenced by the emission sources and soil total organic contents (TOC). The chiral compounds were generally nonracemic in the soils and showed preferential degradation of (−) o,p′- dichlorodiphenyltrichloroethane, (+) trans-chlordane, and (−) cis-chlordane in both the O- and A-horizons. The enantiomeric fraction (EF) distributions of chiral OCPs displayed no differences across the forest sites in the O-horizon or the A-horizon. Comparing the deviation of EFs from racemic (DEVrac = absolute value of 0.500 - EF) with environmental parameters, we found that DEVrac of cis-chlordane demonstrated a strong positive correlation with TOC (p < 0.05) and the C/N ratio (p < 0.01). This relationship suggests that these factors could affect the microbial activity and significantly impact the extent of enantioselective degradation of chiral compounds in the soils. Fresh and historical applications of DDT and historical chlordane and endosulfan uses may be prominent sources of OCP accumulation in Chinese forest soils.
Show more [+] Less [-]Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
Show more [+] Less [-]The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles
2020
Swart, Elmer | Goodall, Tim | Kille, Peter | Spurgeon, David J. | Svendsen, Claus
Environmental pollution can disrupt the interactions between animals and their symbiotic bacteria, which can lead to adverse effects on the host even in the absence of direct chemical toxicity. It is therefore crucial to understand how environmental pollutants affect animal microbiomes, especially for those chemicals that are designed to target microbes. Here, we study the effects of two biocidal nanoparticles (NPs) (Ag and CuO) on the soil bacterial community and the resident gut microbiome of the earthworm Eisenia fetida over a 28-day period using metabarcoding techniques. Exposures to NPs were conducted following OECD test guidelines and effects on earthworm reproduction and juvenile biomass were additionally recorded in order to compare effects on the host to effects on microbiomes. By employing a full concentration series, we were able to link pollutants to microbiome effects in high resolution. Multivariate analysis, differential abundance analysis and species sensitivity distribution analysis showed that Ag-NPs are more toxic to soil bacteria than CuO-NPs. In contrast to the strong effects of CuO-NPs and Ag-NPs on the soil bacterial community, the earthworm gut microbiome is largely resilient to exposure to biocidal NPs. Despite this buffering effect, CuO-NPs did negatively affect the relative abundance of some earthworm symbionts, including ‘Candidatus Lumbricincola’. Changes in the soil bacterial community and the earthworm microbiome occur at total copper concentrations often found or modelled to occur in agricultural fields, demonstrating that soil bacterial communities and individual taxa in the earthworm microbiome may be at risk from environmental copper exposure including in nanomaterial form.
Show more [+] Less [-]