Refine search
Results 451-460 of 7,292
Road salt is more toxic to wood frog embryos from polluted ponds Full text
2022
Forgione, Mia E. | Brady, Steven P.
Organisms that rely on aquatic habitats in roaded landscapes face a growing array of consequences from pollution, especially due to freshwater salinization. Critically, these consequences can vary from population to population depending on exposure histories and evolutionary responses. Prior studies using transplant and common garden experiments have found that aquatic-stage wood frogs (Rana sylvatica) from roadside populations are less fit in the wild and more sensitive to road salt than their counterparts from woodland populations away from roads. While this pattern is consistent with local maladaptation, unresolved insights into the timing and duration of these effects leave open the possibility that negative outcomes are countered during development. Here, we asked whether the survival disadvantage of roadside wood frogs is stage-specific, and whether this disadvantage reverses before metamorphosis. We used a common garden road salt exposure experiment and a field-based reciprocal transplant experiment to examine differences in survival across life-history stage and with respect to population type. In each experimental context, roadside embryos showed a survival disadvantage relative to woodland embryos, and this disadvantage was not reversed prior to metamorphosis. We also found that salt exposure delayed metamorphosis more strongly for roadside than woodland populations. Together, these results suggest that local maladaptation in aquatic-stage wood frogs is driven by embryonic sensitivity to salt and that roadside populations are further compromised by delayed developmental rates. Future studies should consider which embryonic traits fail to adapt to salt toxicity, and how those traits might correlate with terrestrial trait variation.
Show more [+] Less [-]Burden of disease induced by public overexposure to solar ultraviolet radiation (SUVR) at the national and subnational levels in Iran, 2005–2019 Full text
2022
Abtahi, Mehrnoosh | Dobaradaran, Sina | Koolivand, Ali | Jorfi, Sahand | Saeedi, Reza
Estimating the burden of diseases induced by overexposure to solar ultraviolet radiation (SUVR) can help to prioritize environmental health interventions. The age-sex specific and cause-specific mortality and disability-adjusted life years (DALYs) attributable to overexposure to SUVR at the national and subnational levels in Iran, 2005–2019 were estimated. The burden of disease induced by overexposure to SUVR was quantified in four steps as follows: (1) estimating exposure to SUVR, (2) estimating total incidences and deaths of target causes, (3) assessing population attributable fractions of the target causes for the SUVR, and (4) calculating the attributable burden of disease. The attributable DALYs, deaths, age-standardized DALY rate, and age-standardized death rate at the national level were determined to be respectively 21896, 252, 42.59, and 0.56 in 2005 and were respectively changed to 28665, 377, 38.76, and 0.53 in 2019. The contributions of causes in the attributable DALYs at the national level were different by year and sex and for both sexes in 2019 were as follows: 46.15% for cataract, 20.36% for malignant skin melanoma, 16.07% for sunburn, 12.41% for squamous-cell carcinoma, and 5.01% for the other five causes. The contributions of population growth, population ageing, risk exposure, and risk-deleted DALY rate in the temporal variations of the attributable burden of disease in the country were +20.73%, +20.68%, +2.01%, and −12.51%. The highest and lowest provincial attributable age-standardized DALY rates in 2019 were observed in Fars (46.8) and Ardebil (32.7), respectively. The burden of disease induced by exposure to SUVR caused relatively low geographical inequality in health status in Iran. Due to increasing trends of the SUVR as well as the attributable burden of disease, the preventive interventions against the SUVR overexposure should be considered in the public health action plan all across the country.
Show more [+] Less [-]The longitudinal biomonitoring of residents living near the waste incinerator of Turin: Polycyclic aromatic hydrocarbon metabolites after three years from the plant start-up Full text
2022
Iamiceli, A.L. | Abate, V. | Bena, A. | De Filippis, Sp | De Luca, S. | Iacovella, N. | Farina, E. | Gandini, M. | Orengia, M. | De Felip, E. | Abballe, A. | Dellatte, E. | Ferri, F. | Fulgenzi, Ar | Ingelido, A.M. | Ivaldi, C. | Marra, V. | Miniero, R. | Crosetto, L. | Procopio, E. | Salamina, G.
The waste-to-energy (WTE) incinerator plant located in the Turin area (Italy) started to recover energy from the combustion of municipal solid waste in 2013. A health surveillance program was implemented to evaluate the potential health effects on the population living near the plant. This program included a longitudinal biomonitoring to evaluate temporal changes of some environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs), in residents living in areas near the Turin incinerator (exposed group, E) compared to those observed in subjects living far from the plant (not exposed group, NE). Ten monohydroxy-PAHs (OH-PAHs), consisting in the principal metabolites of naphthalene, fluorine, phenanthrene, and pyrene, were analyzed in urines collected from the E and NE subjects after one (T₁) and three years (T₂) of plant activity and compared with those determined in the same cohort established before the plant start-up (T₀). Spearman correlation analysis was undertaken to explore possible associations between OH-PAHs and personal characteristics, lifestyle variables, and dietary habits. A linear mixed model (LMM) approach was applied to determine temporal trends of OH-PAHs observed in the E and NE subjects and to evaluate possible differences in trend between the two groups. Temporal trends of OH-PAHs determined by LMM analysis demonstrated that, at all times, the E group had concentrations lower than those assessed in the NE group, all other conditions being equal. Moreover, no increase in OH-PAH concentrations was observed at T₁ and T₂ either in E or in NE group. Significant positive correlations were found between all OH-PAHs and smoking habits. Regarding variables associated to outdoor PAH exposure, residence near high traffic roads and daily time in traffic road was positively correlated with 1-hydroxynaphthalene and 1-hydroxypyrene, respectively. In conclusion, no impact of the WTE plant on exposure to PAHs was observed on the population living near the plant.
Show more [+] Less [-]Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization Full text
2022
Hou, Jingtao | Tan, Xiaoke | Xiang, Yongjin | Zheng, Qian | Chen, Chang | Sha, Zhenjie | Ren, Lu | Wang, Mingxia | Tan, Wenfeng
Goethite is a commonly found iron (hydr)oxide in soils and sediments that has been proven to possess abundant defects in structures. However, the underlying impact of these defects in goethite on arsenic immobilization remains unclear. In this study, goethite samples with abundant, moderate, and sparse defects were synthesized to evaluate their arsenic adsorption capacities. The characteristics of the defects in goethite were investigated by extended X-ray absorption fine structure (EXAFS), high angle annular dark field-scanning transmission electron microscopy-energy dispersion spectrum (HAADF-STEM-EDS) mapping, vibrating-sample magnetometry (VSM), and electron spin resonance (ESR). The characterization analysis revealed that the defects in as-synthesized goethite primarily existed in the form of Fe vacancies. Batch experiments demonstrated that the adsorption capacities of defect-rich goethite for As(V) and As(III) removal were 10.2 and 22.1 times larger than those of defect-poor goethite, respectively. The origin of the impact of Fe defects on arsenic immobilization was theoretically elucidated using density functional theory (DFT) calculations. The enhanced adsorption of goethite was attributed to the improvement of the arsenic affinity due to the Fe vacancy defect, thus considerably promoting arsenic immobilization. The findings of this study provide important insight into the migration and fate of arsenic in naturally occurring iron (hydr)oxides.
Show more [+] Less [-]ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis Full text
2022
Zhang, Lu | Yin, Wei | Shen, Siyi | Feng, Yuyun | Xu, Wenjie | Sun, Yunfei | Yang, Zhou
Under intensive human activity, sewage discharge causes eutrophication-driven cyanobacteria blooms as well as nanomaterial pollution. In biological control of harmful cyanobacteria, top-down effect of protozoan has great potentials for removing cyanobacterial populations, degrading cyanotoxins, and improving phytoplankton community. ZnO nanoparticles as a kind of emerging contaminants have attracted increasing attention because of wide application and their high bio-toxicity effects on reducing the ingestion of aquatic animals including Paramecium, thereby possibly disturbing top-down control of cyanobacteria. Therefore, this study investigated the effects of ZnO nanoparticles at environmental-relevant concentrations on the protozoan Paramecium removing toxic Microcystis. Results showed Paramecium effectively eliminated all the Microcystis, despite exposure to ZnO nanoparticles. However, their ingestion rate was significantly reduced at more than 0.1 mg L⁻¹ ZnO nanoparticles, thereby delaying Microcystis removal. Nevertheless, at 0.1 mg L⁻¹ ZnO nanoparticles, the time to Microcystis extinction decreased compared to the group without ZnO nanoparticles, because Microcystis populations were reduced under this circumstance, while ingestion rate of Paramecium was unaffected. Furthermore, ZnO nanoparticles obviously accumulated in food vacuoles of Paramecium, and the size of nanoparticles aggregates and zinc concentrations in Paramecium were increased with ZnO nanoparticles concentrations. At the end of experiment, these food vacuoles were not dissipated. Overall, these findings suggest that ZnO nanoparticles impair protozoan top-down effects through reducing Microcystis and ingestion rate as well as disturbing functions of their digestive organelles, and highlight the need to consider the interfering effects of environmental pollutants on cyanobacterial removal efficiency by protozoans in natural waters.
Show more [+] Less [-]Microbes drive changes in arsenic species distribution during the landfill process Full text
2022
Hu, Lifang | Zhang, Dongchen | Qian, Yating | Nie, Zhiyuan | Long, Yuyang | Shen, Dongsheng | Fang, Chengran | Yao, Jun
Landfills are considered an anthropogenic source of arsenic (As). The As species mediated by microbes in landfills vary significantly in toxicity. Based on random matrix theory, 16S rRNA genes were used to construct four microbial networks associated with different stages over 12 years of landfill ages. The results indicated that network size and microbial structure varied with landfill age. According to the network scores, about 208 taxa were identified as putative keystones for the whole landfill; the majority of them were Firmicutes, which accounted for 66.8% of all specialists. Random Forest analysis was performed to predict the keystone taxa most responsible for As species distribution under different landfill conditions; 17, 10 and 14 keystone taxa were identified as drivers affecting As species distribution at early, middle, and later landfill stages, respectively.
Show more [+] Less [-]The association between bisphenol A exposure and oxidative damage in rats/mice: A systematic review and meta-analysis Full text
2022
Zhang, Huan | Yang, Rui-fu | Shi, Wanying | Zhou, Xin | Sun, Suju
Numerous studies reported that BPA could cause oxidative damage to different tissues in rats/mice. This study aimed to perform a systematic review and meta-analysis of BPA exposure on oxidative damage in rats/mice. A comprehensive literature search was conducted using PubMed, Embase, and Web of Science databases from their inception date until July 18, 2020. 20 eligible articles were included in this study. The results showed that BPA could significantly increase the level of MDA (SMD, 16.88; 95%CI, 12.06–21.71), but there was a significant reduction in the contents of antioxidants, such as GR (−10.46, −13.91 ∼ −7.02), CAT (−8.48, −11.66 ∼ −5.30), GPx (−9.37, −11.95 ∼ −6.80), GST (−7.59, −14.51 ∼ −0.67), GSH (−10.64, −13.96 ~ −7.33), and SOD (−6.48, −8.37 ∼ −4.58) in rats/mice. Our study provided clear evidence that BPA exposure could significantly induce oxidative damage in rats/mice. And we also found that the degree of oxidative damage was related to BPA dose, target tissue, intervention means, and exposure duration of BPA.
Show more [+] Less [-]Significant impact of seasonality, verticality and biofilm on element accumulation of aquatic macrophytes Full text
2022
Engloner, Attila I. | Németh, Kitti | Óvári, Mihály
Submersed macrophytes accumulate large amounts of macro- and trace elements from the environment and, therefore, are frequently used as indicators of water pollution and tools to remove pollutants from contaminated waters. This study provides evidences that the quantity of macro- and trace elements accumulated in the macrophyte Ceratophyllum demersum depends strongly on the seasonality, on the vertical position of the plant material and on the biofilm cover. Element contents of macrophytes with and without biofilm cover and that of vertical plant sections were investigated by an ICP-MS technique in three different habitats, at the beginning and at the end of the vegetation period. Results demonstrated that the element concentrations of Ceratophyllum demersum dropped to one-half and one-eighth by the end of the summer; and the amount of certain elements in the lower part of plants were up to six times higher than in the upper and in plants with well-developed epiphytic microbial community 2-5-fold higher than in plants without biofilm.These results help in phytoremediation practice and in setting up future biomonitoring studies. When it is necessary to calculate the exact amount of elements which can be accumulated by plants in a polluted environment or should be removed from a contaminated water by harvesting macrophytes, it is of high importance to consider the month of the study, the plant parts harvested and the biofilm cover.
Show more [+] Less [-]Genotoxic potential of bisphenol A: A review Full text
2022
Ďurovcová, Ivana | Kyzek, Stanislav | Fabová, Jana | Makuková, Jana | Gálová, Eliška | Ševčovičová, Andrea
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms – estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Show more [+] Less [-]Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles Full text
2022
Zerboni, Alessandra | Rossi, Tommaso | Bengalli, Rossella | Catelani, Tiziano | Rizzi, Cristiana | Priola, Marco | Casadei, Simone | Mantecca, Paride
Incomplete combustion processes in diesel engines produce particulate matter (PM) that significantly contributes to air pollution. Currently, there remains a knowledge gap in relation to the physical and chemical characteristics and also the biological reactivity of the PM emitted from old- and new-generation diesel vehicles. In this study, the emissions from a Euro 3 diesel vehicle were compared to those from a Euro 6 car during the regeneration of a diesel particulate filter (DPF). Different driving cycles were used to collect two types of diesel exhaust particles (DEPs). The particle size distribution was monitored using an engine exhaust particle sizer spectrometer and an electrical low-pressure impactor. Although the Euro 6 vehicle emitted particulates only during DPF regeneration that primarily occurs for a few minutes at high speeds, such emissions are characterized by a higher number of ultrafine particles (<0.1 μm) compared to those from the Euro 3 diesel vehicle. The emitted particles possess different characteristics. For example, Euro 6 DEPs exhibit a lower PAH content than do Euro 3 samples; however, they are enriched in metals that were poorly detected or undetected in Euro 3 emissions. The biological effects of the two DEPs were investigated in human bronchial BEAS-2B cells exposed to 50 μg/mL of PM (corresponding to 5.2 μg/cm²), and the results revealed that Euro 3 DEPs activated the typical inflammatory and pro-carcinogenic pathways induced by combustion-derived particles, while Euro 6 DEPs were less effective in regard to activating such biological responses. Although further investigations are required, it is evident that the different in vitro effects elicited by Euro 3 and Euro 6 DEPs can be correlated with the variable chemical compositions (metals and PAHs) of the emitted particles that play a pivotal role in the inflammatory and carcinogenic potential of airborne PM.
Show more [+] Less [-]