Refine search
Results 451-460 of 7,203
Evolution of antibiotic resistance genes and bacterial community during erythromycin fermentation residue composting Full text
2022
Ren, Jianjun | Deng, Liujie | Li, Chunyu | Li, Zhijie | Dong, Liping | Zhao, Jian | Huhetaoli, | Zhang, Jin | Niu, Dongze
The removal efficiency of antibiotic resistance genes (ARGs) is the biggest challenge for the treatment of erythromycin fermentation residue (EFR). In the current research, 0% (control), 10% (T1), and 30% (T2) spray-dried EFR were composted with bulking materials, consisting of cattle manure and maize straw, for 30 days. Environmental factors and bacterial community on the behaviors of ARGs were further investigated. Apart from the high levels of erythromycin, the electrical conductivities were also increased by 66.7% and 291.7% in the samples of T1 and T2, respectively. After 30 days of composting, total ARGs in the samples of control were decreased by 78.1%–91.2%, but those of T1 and T2 were increased 14.5–16.7- and 38.5–68.7-fold. ARGs related to ribosomal protection (erm) dominated the samples of T1 and T2 at D 13 and 30, especially that ermF accounted for more than 80% of the total ARGs. Furthermore, the results of bacterial community revealed that EFR promoted the growth of Proteobacteria and Bacteroidetes, but inhibited that of Actinobacteria, Verrucomicrobia and Chloroflexi. Network analysis revealed that the enriched ARGs had strong correlation with seven bacterial genera, including Halomonas, Oceanobacillus, and Alcaligenes, most of which are halotolerant. Above all, erythromycin combined with high salinity can have synergistic effect on the enrichment of ARGs and their hosts.
Show more [+] Less [-]Effects of the presence of triclocarban on the degradation and migration of co-occurring pesticides in soil Full text
2022
Tei, Sei | Zhang, Chuntao | Jiang, Wenqi | Zhai, Wangjing | Gao, Jing | Wang, Peng
Triclocarban (TCC), a bactericide widely used in personal care products, is frequently detected in soil and surface water, which may affect the environmental behavior of other environmental pollutants by changing the community structure of environmental microorganisms. This work evaluated the effects of TCC on the degradation and migration of seven herbicides and five fungicides in soil under co-occurrence conditions. TCC significantly increased the persistence of the pesticides in soil, and this effect increased with TCC concentration. For example, the half-life of metolachlor, atrazine, metribuzin, and metamitron increased 44%, 38%, 153%, and 33%, respectively, with 10 mg/kg TCC and increased 60%–640% with 100 mg/kg TCC. After 90 days, the residue of the pesticides in soil treated with TCC was significantly elevated relative to the control. TCC treatment could also increase the potential leaching risk of the herbicides in the soil, as indicated by an increased Groundwater Ubiquity Score (GUS) index. The reduced abundance of soil bacteria by TCC might be an essential reason for the impacts on the environmental behavior of the pesticides. This study confirmed that TCC could slow down the degradation of pesticides in soil, increase their persistence and even affect the leaching behavior, thus influencing the risks of the pesticides to the environment.
Show more [+] Less [-]Effects of shrimp pond effluent on functional traits and functional diversity of mangroves in Zhangjiang Estuary Full text
2022
Gao, Chang-Hao | Zhang, Shan | Wei, Ming-Yue | Ding, Qian-Su | Ma, Dong-Na | Li, Jing | Wen, Chen | Li, Huan | Zhao, Zhi-Zhu | Wang, Junhui | Zheng, Hai-Lei
In recent years, the scale of shrimp ponds has rapidly increased adjacent to mangrove forests. Discharge of shrimp pond effluent has led to degradation of the surrounding environment and reduction of biodiversity in the estuary. But it remains poorly understood how shrimp pond effluent affects functional traits and functional diversity of mangroves. We sampled roots, stems and leaves of Kandelia obovata and other mangrove plants, as well as sediments and pore water from shrimp pond effluent polluted area (P) and clean area (control area, C) in Zhangjiang Estuary in southeast coast of China. Twenty plant functional traits and six functional diversity indices were analyzed to explore the effects of shrimp pond effluent on individual plants and mangrove communities. The results showed that the discharge of shrimp pond effluent significantly affected the nutrient content in soils and pore water, for example, sediment NH₄⁺ and NO₃⁻ concentration increased from 0.26 ± 0.06 to 0.77 ± 0.29 mg/g and from 0.05 ± 0.03 to 0.16 ± 0.05 mg/g, respectively, when comparing the C and P site. Furthermore, some mangrove plant functional traits such as plant height, diameter at breast height, canopy thickness and specific leaf area were significantly increased by the effluent discharge. Functional diversity in the polluted area reduced as a whole compared to the control area. In particular, ammonium and nitrate nitrogen input is the main reason to induce the changes of plant functional traits and functional diversity. Besides, the community structure changed from functional differentiation to functional convergence after shrimp pond effluent discharge. In addition, the long-term shrimp pond effluent discharge may lead to the ecological strategy shift of K. obovata, while different organs may adopt different ways of nutrient uptake and growth strategies in the face of effluent disturbance. In conclusion, pollution from shrimp pond does affect the functional traits of mangrove plants and functional diversity of mangrove community. These results provide strong evidence to assess the impact of effluent discharges on mangrove plants and provide theoretical basis for conservation and sustainable development of mangroves.
Show more [+] Less [-]Design of a dual responsive receptor with oxochromane hydrazide moiety to monitor toxic Hg2+ and Cd2+ ions: Usage on real samples and live cells Full text
2022
Kavitha, Venkatachalam | Ramya, Mari | Viswanathamurthi, Periasamy | Haribabu, Jebiti | Echeverria, Cesar
In this work, we report a facile receptor OMB [N′,N”’-(3-((4-oxochroman-3-yl)methylene)pentane-2,4- diylidene)bis(4-methoxybenzohydrazide)] for the simultaneous detection of toxic analytes (Hg²⁺ and Cd²⁺ ions) in environment and biological samples. The receptor OMB exhibits an excellent selectivity and sensitivity which was determined using absorption and emission spectra. The receptor OMB shows rapid detection with lowest LOD (0.62 nM for Hg²⁺ ions and 0.77 nM for Cd²⁺ ions) and LOQ (2.08 nM for Hg²⁺ ions and 2.57 nM for Cd²⁺ ions) values. In addition, the receptor OMB exhibits 1:1 binding stoichiometry towards Hg²⁺ and Cd²⁺ ions with binding constant values of 5.5 × 10⁶ M⁻¹ and 4.6 × 10⁶ M⁻¹. Moreover, the synthesized receptor OMB possess ability to detect these analytes (Hg²⁺ and Cd²⁺ ions) in realistic samples (food and water) which was recognized using photoluminescence spectroscopy technique. In addition, the receptor OMB is also utilized to detect both the analytes in live HeLa cells. Thus, the overall results indicate that the receptor OMB was more suitable to detect the toxic analytes (Hg²⁺ and Cd²⁺ ions) present in the environment.
Show more [+] Less [-]Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands Full text
2022
Lin, Fei | Zuo, Hongchao | Ma, Xiaohong | Ma, Lei
European natural peatlands have undergone long-term anthropogenic drainage activities that have severely decreased their functions, such as carbon sequestration. Recent rewetting has been conducted to restore the ecosystem services of peatlands and mitigate the emissions of potent greenhouse gases such as nitrous oxide (N₂O). However, the magnitudes and spatial patterns of annual N₂O fluxes and their mitigation potentials across European peatlands remain unknown. Here, we synthesized 492 annual N₂O flux data points from 77 in situ studies across European peatlands and found that the soil annual N₂O fluxes varied extensively from −1.08 to 33.40 kg N₂O–N ha⁻¹ yr⁻¹; these results were significantly and interactively (P < 0.05) affected by the peatland status, climatic regime and nutrient supply type. Drainage significantly (P < 0.05) stimulated soil N₂O emissions from natural minerotrophic rather than ombrotrophic peatlands, regardless of the climatic regime. Similarly, rewetting significantly (P < 0.05) reduced soil N₂O emissions from drained minerotrophic rather than ombrotrophic peatlands, demonstrating that the high N₂O emissions were driven by a simultaneous decline in the water table depth and increase in the soil nitrogen (N) availability. Magnitudes of the increases or decreases in N₂O emissions due to drainage or rewetting were also significantly influenced by the land-use and drainage history before rewetting and in the years following drainage/rewetting, respectively. The estimated annual mean N₂O emission total was found to be 90.42 (95% confidence interval: 64.49–122.57) Gg N₂O–N in 2020 from European peatlands. Scenario analysis showed that drained peatlands should be rewetted expeditiously; postponing rewetting would cause larger emissions from continued N₂O emissions from drained peatlands. Fully rewetting the drained peatlands used for forestry and peat extraction and partially rewetting those used for agriculture and grassland comprise a strategy for mitigating drained peatland N₂O emissions without compromising food security.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-18-CE34-0013,APPROve,Démarche intégrée pour proposer la protéomique dans la surveillance : accumulation, devenir et multimarqueurs(2018)
International audience | One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109 Cd-or 65 Znradiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109 Cd or 65 Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7 th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]Uptake, speciation and detoxification of antimonate and antimonite in As-hyperaccumulator Pteris Cretica L Full text
2022
He, Si-Xue | Chen, Jia-Yi | Hu, Chun-Yan | Han, Ran | Dai, Zhi-Hua | Guan, Dong-Xing | Ma, Lena Q.
Antimony (Sb) and arsenic (As) are chemical analogs, but their behaviors in plants are different. To investigate the Sb uptake, translocation and speciation in As-hyperaccumulator P. cretica, a hydroponic experiment was conducted. In this study, P. cretica was exposed to 0.2-strength Hoagland nutrient solution, which contained 0.5 or 5 mg/L antimonite (SbIII) or antimonate (SbV). After 14 d exposure, P. cretica took up 1.4–2.8 times more SbIII than SbV. Since P. cretica was unable to translocate Sb, its roots accumulated >97% Sb with the highest at 7965 mg/kg. In both SbIII and SbV treatments, SbIII was the predominant species in P. cretica, with 90–100% and 46–100% SbIII in the roots. As the first barrier against Sb to enter plant cells, more Sb was accumulated in cell wall than cytosol or organelles. The results suggest that P. cretica may detoxify Sb by reducing SbV to SbIII and immobilizing it in root cell walls. Besides, the presence of SbIII significantly reduced the concentrations of dissolved organic C including organic acids in P. cretica root exudates. Further, increasing Sb levels promoted P accumulation in the plant, especially in the fronds, which may help P. cretica growth. The information from this study shed light on metabolic transformation of Sb in As-hyperaccumulators P. cretica, which helps to better understand Sb uptake and detoxification by plants.
Show more [+] Less [-]Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics Full text
2022
Cheng, Yuan | Lu, Jiarui | Fu, Shusen | Wang, Shangjie | Senehi, Naomi | Yuan, Qingbin
Microplastics (MPs) are an emerging global concern as they are abundant in the environment and can act as vectors of various contaminants. However, whether and how MPs can be vectors of antibiotic resistance genes (ARGs), especially extracellular ARGs (eARGs), remains far from explicit. This study addresses the adsorption of both intracellular ARGs (iARGs) and eARGs by four types of MPs in municipal wastewater, and then explores the potential horizontal gene transfer of iARGs and eARGs exposed to MPs. Results indicate that though MPs significantly adsorbed both iARGs and eARGs, eARGs were adsorbed with a significantly higher fold enrichment (2.0–5.0 log versus 2.0–3.3 log) and rate (0.0056 min⁻¹ versus 0.0037 min⁻¹) than iARGs. While all four types of MPs adsorbed ARGs, polypropylene MPs showed the highest adsorption capacity for ARGs. Background constituents such as humic acid and antibiotics significantly inhibited adsorption of iARGs, but not eARGs on MPs. The presence of sodium chloride didn't significantly affect adsorption of iARGs or eARGs. The adsorption of ARGs was well explained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) interaction energy profile. Higher eARG adsorption was attributed to a lower energy barrier between MPs and eARGs than that between MPs and iARGs. Exposure to MPs enhanced horizontal gene transfer of both iARGs and eARGs by 1.5 and 2.0 times, respectively. The improved contact potential between donors and recipients, as well as the increased cell permeability of recipients induced the improved horizontal gene transfer by MPs. This study underscores the need to address ARG propagation through adsorption to MPs.
Show more [+] Less [-]Earthworm half-pipe assay: A new alternative in vivo skin corrosion test using invertebrates Full text
2022
Kwak, Jin Il | Kim, Haemi | An, Youn-Joo
As a result of the efforts to introduce the principle of the 3Rs (replacement, reduction, and refinement) into animal testing, alternative in vitro skin corrosion test methods have been developed and standardized globally. However, alternative in vitro skin corrosion test methods have some limitations in terms of the use of humanely killed rats or commercial models and kits. The present study focused on the applicability of invertebrates as alternative in vivo skin models. Even though earthworm skin comprises the same biomolecules as human skin, the possibility of using earthworm skin as an alternative for skin testing remains unexplored. In this study, we developed a half-pipe tool for earthworm skin corrosion testing and optimized the test protocol. Subsequently, the applicability of the earthworm half-pipe assay for corrosion testing with six chemicals, including inorganic acids, organic acids, and alkalis, was investigated using stereomicroscopy and electron microscopy. It was observed that the specific concentrations for earthworm skin corrosion were lower than those for animal or in vitro tests. Therefore, the sensitivity of the earthworm half-pipe assay indicates that it could be useful as a screening tool before conducting in vivo animal tests or in vitro skin tests. This new method can contribute to research on alternative skin corrosion tests by reducing ethical issues, time, and cost while achieving effective results.
Show more [+] Less [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant Full text
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Show more [+] Less [-]