Refine search
Results 451-460 of 501
A Short-Term Autoregressive Model for the Prediction of Daily Average NO2 Concentration in Nagercoil, Tamil Nadu, India
2024
P. Muthukrishnan and R. Krishna Sharma
Nitrogen dioxide (NO2) is one of the pollutants that can cause potential damage to the ecosystem. NO2 emitted from vehicles forms the primary precursor for ground-level ozone. In this study, an analysis of the daily average of NO2 concentration with meteorology measured for two years 2021 and 2022 is being carried out. It is evident from the analysis that NO2 concentration followed an apparent diurnal pattern with a maximum value in the morning hours and a minimum during the afternoon hours. Summer months recorded the highest, and North East Monsoon (NEM) recorded the lowest values of NO2. A statistically significant positive correlation was found between NO2 and Temperature. An autoregressive model was formulated to forecast the daily average values of NO2 concentration. Unit root test was performed to check the stationarity of the data points, which is important in determining trends and seasonal changes. From the model procedure, the order that best fits the data was identified as AR (4), in which the process has the current value based on the previous three values. The Akaike Information Criterion (AIC) and Schwartz Criterion (SC), which are estimators of prediction error for AR (4), are low. The Jarque confirmed the normal distribution-Bera test, which again approves the satisfactoriness of the model.
Show more [+] Less [-]Energy Requirement of Wastewater Treatment Plants: Unleashing the Potential of Microalgae, Biogas and Solar Power for Sustainable Development
2024
Urvashi Gupta, Abhishek Chauhan, Hardeep Singh Tuli, Seema Ramniwas, Moyad Shahwan and Tanu Jindal
Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.
Show more [+] Less [-]Analysis and Characterization of Municipal Solid Wastes Generated in Ifugao State University Potia Campus: A Basis For Planning of Waste Management
2024
P. Latugan, J. J. Carabacan, G. Bonicillo, J. Cayog, M. Q. Eyawa, M. T. Cairel and J. M. Ngohayon
The end of the COVID-19 pandemic resulted in the total return of students and employees in Ifugao State University Potia Campus, a higher education institution located in Potia, Alfonso Lista, Ifugao, Philippines. However, the return of the pre-pandemic operations on campus caused problems in managing the generated municipal solid wastes. Hence, an analysis and characterization of the generated municipal solid wastes was conducted to determine important data that can be used for future waste management planning. The generated municipal solid wastes were gathered from the various waste generators within the campus for five consecutive days. The total generated municipal solid waste on the campus was about 140.10 kg.day-1, most of which was contributed by the canteens (20.86%). The generated municipal solid wastes were dominated by biodegradable waste (48.65%) and recyclable waste (37.26%). In addition, most of the generated municipal solid wastes were related to people’s food and beverage consumption behavior. The total volume of the MSW generated daily was about 5.647 m3. It is recommended that the campus create and enforce its waste management plan to specifically address the aforementioned characteristics of the generated municipal solid wastes.
Show more [+] Less [-]Exploring the Trend of Aerosol Optical Depth and its Implication on Urban Air Quality Using Multi-spectral Satellite Data During the Period from 2009 to 2020 over Dire Dawa, Ethiopia
2024
Teshager Argaw Endale, Gelana Amente Raba, Kassahun Ture Beketie and Gudina Legese Feyisa
This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.
Show more [+] Less [-]Study On Spatial Variations of Surface Water Quality Vulnerable Zones in Baitarani River Basin, Odisha, India
2024
Abhijeet Das, J. Jerlin Regin, A. Suhasini and K. Baby Lisa
The stated goal of the research is to investigate the surface water quality of the Baitarani River in Odisha to ascertain its compatibility for various uses. Large, complex datasets generated during the one-year (2021-2022) monitoring program were collected from 13 locations and encompassed 22 parameters. To examine temporal and spatial fluctuations in and to interpret these datasets, MCDMs like TOPSIS and the Entropy-based Water Quality Index (EWQI) were utilized. The physical and chemical outcomes of the current experiment were compared to WHO standards. According to the analysis’s results, turbidity and total coliform (TC) are indicators that have a greater impact on water quality in all locations during both seasons and are directly linked to home and agricultural non-point source pollution. As per EWQI interpretation, 30.77 % of the observations in PRM and POM fall under the poor category. The findings showed how anthropogenic activities have harmed St. 8, 11, 12, and 13 and require effective management. A quantifiable approach was also carried out to decide the efficacy of TOPSIS. Farming attributes, including SAR, % Na, RSC, MR, KI, and PI, were estimated to delineate the agriculturally practicable zones. This work can offer a reference database for the betterment of water quality.
Show more [+] Less [-]Design and Modelling of Urban Stormwater Management and Treatment Infrastructure for Communities in Wuse, Abuja
2024
O. J. Oyebode and A.M. Umar
Effective stormwater management can be used to regulate water quantity and quality for environmental sustainability, flood control, pollution reduction and other advantages of civil engineering infrastructures. Pollution of the environment and contamination of water sources can emanate from improper stormwater management. This study used a small-scale model of rainwater harvesting to analyze the design and model of urban stormwater management and treatment infrastructure for the neighborhoods in Abuja. The water quality of the treated stormwater retrieved has improved as a result of the usage of memory foam, alum, and chlorine to filter out contaminants and pathogens. With the fictitious stormwater treatment model created for this study, average values of the physicochemical parameters were collected from the stormwater discharge after it had been filtered and treated. The use of potash alum has had a variety of effects on the water’s quality. From 697 mg.L-1 to 635 mg.L-1, the total dissolved solids dropped. The DO dropped from 5.87 mg.L-1 to 3.92 mg.L-1 as well. Additionally, the turbidity rose from 4.42 FNU to 4.58 FNU, and the salinity rose from 0.7 PSU to 1.44 PSU, respectively. pH decreases from 19.78 to 15.17 mg.L-1, BOD decreases from 8.35 to 6.51, and COD decreases from 2.55 to 1.9. Calcium hardness has decreased from 287 mg.L-1 to 265.83 mg.L-1. The conductivity increases marginally from 3.24 ms.cm-1 to 3.82 ms.cm-1. The Fe2+ and Zn2+ ions exhibit a little decrease from 0.143 mg.L-1 to 0.055 mg.L-1 and from 0.092 mg.L-1 to 0.045 mg.L-1, respectively. Due to inadequate or nonexistent drainage systems in the many states and villages throughout the country, stormwater run-off management and treatment in Nigeria have been a colossal failure. Effective stormwater management can be sustained by using legal and environmental laws.
Show more [+] Less [-]Effects of Glyphosate on the Environment and Human Health
2024
L. A. García-Villanueva, V. H. Cuapio-Ortega, I. Y. Henández-Paniagua, G. Fernández-Villagómez, J. Rodrigo-Ilarri, M. E. Rodrigo-Clavero, G. L. Andraca-Ayala, G.B. Hernández-Cruz and S. Banda-Santamaría
Glyphosate is a herbicide of a wide spectrum that alters the production of amino acids in plants, leading to their death. Due to its properties, it is used to eliminate weeds that interfere with human activity. The intensive use of this herbicide in the past decades has led to its frequent encounter in the environment as it has been detected in water, animals, and food destined for human consumption. Its impact on human health and the rest of living organisms has not been fully explored, given that many authors enter into contradictions with one another, specifically surrounding the role of surfactants in the commercial presentation of herbicides. The use of pesticides can have significant impacts on ecosystems, threatening bio-cultural diversity due to genetic contamination from transgenic crops. The effectiveness of Glyphosate-based herbicides in weed control is diminishing due to weed tolerance. However, the use of herbicides remains prevalent in large-scale crops due to the challenges of organic food production. In addition, the probable conflict of interest by the agrochemical industry does not bring a full picture with respect to the actions that world governments should take. Banning GLP-based herbicides may lead to the use of other pesticides, in which the long-term impacts will require further studies. The motivation for this research is the review of the latest advances of glyphosate in the world, considering the use and prohibitions of this herbicide, its interaction with water and soil, as well as the effects on both the environment and health. The search for information for this paper was carried out in the Mendeley, Elsevier, and Springer databases by filtering by the suitable keywords.
Show more [+] Less [-]Application of Graphene and Chitosan in Water Splitting/Catalysis
2024
Nimra Iqbal, Shaukat Ali,, Asif Hanif Chaudhry, Nosheen Sial, Syed Asim Abbas Zaidi, Waqar Ahmad Murtaza and Shumaila Shabbir
This study aims to explore the applications of graphene and chitosan in water splitting and catalysis, focusing on their unique properties and synergistic effects. A comprehensive review of the literature was conducted to examine their roles in photocatalytic activity and environmental remediation. Graphene, known for its high surface area and conductivity, was analyzed for its ability to enhance charge separation and light harvesting through doping and hybridization with metal nanoparticles. Similarly, chitosan’s biopolymeric nature and strong affinity for transition metals were evaluated for their utility in enzymatic and catalytic applications. Results indicate that graphene’s photocatalytic performance can be significantly improved through doping and functionalization, while chitosan proves effective in wastewater treatment and as a polymeric support for catalysts. The study concludes that the combined use of graphene and chitosan offers promising potential for advancing sustainable energy solutions and environmental technologies.
Show more [+] Less [-]Enhancing Sustainability in the Indo-Gangetic Plains Through Biochar: A Solution to Stubble Burning
2024
Meenu Yadav, Deepak Kumar Yadav and Anuradha Jayaraman
In the Indo-Gangetic Plains (IGP) of northern India, the prevalent rice-wheat cropping system (RWS) is marked by a continuous cycle of planting wheat from October to April and rice from June to September. However, the transition between these crops necessitates the burning of stubble due to the short time frame available for land preparation before planting wheat. This practice contributes significantly to environmental pollution and poses health risks to both humans and ecosystems. To address this issue, alternative management strategies for crop residue are imperative. Utilizing stubble as fuel, feedstock for biofuels, or raw material for the pulp and paper industry offers promising solutions. Among these, biochar emerges as a particularly effective option. Biochar, derived from the pyrolysis of agricultural waste, not only mitigates environmental pollution but also enhances soil health, crop productivity, and overall agricultural sustainability. Our proposal emphasizes the potential of biochar as a soil conditioner, promoting soil carbon sequestration, improving soil quality, and ultimately enhancing food security.
Show more [+] Less [-]Seasonal Variations in Microplastic Abundance and Removal Efficiency in Wastewater Treatment Plants in Bangkok, Thailand
2024
M. Eknai, S. Leungprasert and K. Tungsudjawong
Wastewater treatment plants (WWTP) are significant contributors to the release of microplastics into aquatic environments. Due to the limited information available in Thailand, examining microplastics from WWTPs could assist the Thai government in establishing guidelines for future microplastic control. This study identified microplastics in various WWTPs across Bangkok, Thailand, during two seasons: the dry period (February to May 2022) and the wet period (June to October 2022). The findings revealed a higher abundance of microplastics during the wet season compared to the dry season. In both influent and effluent, fibers were the predominant shape, making up approximately 86.65% during the dry period and 94.37% during the wet period. Fragments, films, granules, and foam were also detected in all samples. Polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) were the most common polymers present in the microplastic samples. The study also highlighted that the removal efficiency of microplastics from WWTPs ranged from 16.7% to 85.4% during the dry period and from 27.6% to 81.0% during the wet period. These results underscore the importance of long-term monitoring and quantification of microplastics in different WWTP systems in Bangkok. This data can be utilized to estimate microplastic loading in WWTPs and develop effective strategies for microplastic removal from wastewater.
Show more [+] Less [-]