Refine search
Results 461-470 of 5,239
Determinants of prenatal exposure to polybrominated diphenyl ethers (PBDEs) among urban, minority infants born between 1998 and 2006 Full text
2018
Cowell, Whitney J. | Sjödin, Andreas | Jones, Richard | Wang, Ya | Wang, Shuang | Herbstman, Julie B.
Polybrominated diphenyl ethers (PBDEs) are environmentally persistent chemicals that structurally resemble legacy pollutants, such as polychlorinated biphenyls (PCBs). PBDEs were added to consumer products for over 30 years, before being phased out due to evidence of toxicity. We examined temporal changes in prenatal exposure to PBDEs, as well as other sources of variation. We measured PBDEs in umbilical cord plasma from 327 minority infants born in New York City between 1998 and 2006. We used linear regression to examine changes in concentrations over time and in relation to lifestyle characteristics collected during pregnancy. We detected BDE-47 in 80% of samples with a geometric mean concentration of 14.1 ng/g lipid. Ethnicity was the major determinant of PBDE exposure; African American infants had 58% higher geometric mean cord plasma concentrations of BDE-47 (p < 0.01) compared to Dominican infants. Notably, African American mothers were more likely to be born in the United States, which itself was associated with 40% (p < 0.01) higher concentrations. We observed small decreases in PBDE concentrations by date of birth and no difference before and after their phase-out in 2004. Final multivariable models explained 8–12% of variability in PBDE concentrations depending on the congener. Our finding that prenatal exposure to PBDEs decreased only modestly between 1998 and 2006 is consistent with the persistent properties of PBDEs and their ongoing release from existing consumer products.
Show more [+] Less [-]Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior Full text
2018
Ghassabian, Akhgar | Bell, Erin M. | Ma, Wanli | Sundaram, Rajeshwari | Kannan, Kurunthachalam | Buck Louis, Germaine M. | Yeung, Edwina
Experimental studies suggest that prenatal exposure to endocrine disrupting chemicals interferes with developmental processes in the fetal brain. Yet, epidemiological evidence is inconclusive.In a birth cohort (2008–2010, upstate New York), we quantified concentrations of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and bisphenol A (BPA) in stored newborn dried blood spots using liquid chromatography/tandem mass spectrometry. Mothers reported on children's behavior using the Strengths and Difficulties Questionnaire at age 7 (650 singletons and 138 twins). Difficulties in total behavior (i.e., emotional, conduct, hyperactivity, and peer problems) and prosocial behavior were classified using validated cut-offs. We used logistic regression with generalized estimating equations to estimate the odds of having difficulties per exposure category.In total, 111 children (12.1%) had total behavioral difficulties and 60 (6.5%) had difficulties in prosocial behavior. The median (interquartile range) of PFOS, PFOA, and BPA were 1.74 ng/ml (1.33), 1.12 ng/ml (0.96), and 7.93 ng/ml (10.79), respectively. Higher PFOS levels were associated with increased odds of having behavioral difficulties (OR per SD of log PFOS = 1.30, 95%CI: 1.03–1.65). We observed associations between PFOS in the highest relative to the lowest quartile and behavioral difficulties (OR for PFOS₁.₁₄₋₁.₇₄ = 1.65, 95%CI: 0.84–3.34; PFOS₁.₇₅₋₂.₄₇ = 1.73, 95%CI: 0.87–3.43; and PFOS>₂.₄₇ = 2.47, 95%CI: 1.29–4.72 compared to PFOS<₁.₄₁). The associations between higher concentrations of PFOS and behavioral difficulties at age 7 years were driven by problems in conduct and emotional symptoms. Higher PFOA levels were associated with difficulties in prosocial behavior (OR = 1.35, 95%CI: 1.03–1.75). There was an inverse association between BPA concentrations and difficulties in prosocial behavior but only in the 2nd and 4th quartiles. We found no interactions between sex and chemical concentrations.Increasing prenatal exposure to PFOS and PFOA, as reflected in neonatal concentrations, may pose risk for child behavioral difficulties.
Show more [+] Less [-]DEHP toxicity on vision, neuromuscular junction, and courtship behaviors of Drosophila Full text
2018
Chen, Mei-Ying | Liu, Hsin-Ping | Liu, Chuan-Hsiu | Cheng, Jack | Chang, Meng-Shiun | Chiang, Su-Yin | Liao, Wing-Ping | Lin, Wei-Yong
Bis(2-ethylhexyl) phthalate (DEHP) is the most common plasticizer. Previous studies have shown DEHP treatment accelerates neurological degeneration, suggesting that DEHP may impact retinal sensitivity to light, neurotransmission, and copulation behaviors. Although its neurotoxicity and antifertility properties have been studied, whether DEHP exposure disrupts vision and how DEHP influences neuromuscular junction (NMJ) have not been reported yet. Moreover, the impact of DEHP on insect courtship behavior is still elusive. Fruit flies (Drosophila melanogaster) were treated with series concentrations of DEHP and observed for lifespan, motor function, electroretinogram (ERG), electrophysiology of neuromuscular junction (NMJ), courtship behaviors, and relevant gene expression. Our results confirmed the DEHP toxicity on lifespan and capacity of motor function and updated its effect on copulation behaviors. Additionally, we report for the first time that DEHP exposure may harm vision by affecting the synaptic signaling between the photoreceptor and the laminar neurons. Further, DEHP treatment altered both spontaneous and evoked neurotransmission properties. Noteworthy, the effect of DEHP exposure on the copulation behavior is sex-dependent, and we proposed potential mechanisms for future investigation.
Show more [+] Less [-]Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids Full text
2018
Xu, Juan | Hu, Yan-Yun | Li, Xiu-Yan | Chen, Jie-Jie | Sheng, Guo-Ping
Antibiotics residuals in the environments receive wide concerns due to the high risk of generating antibiotic resistance. Natural organic matters (NOM) existed in the environments are considered to have the capacity of binding with organic contaminants, consequently influencing their speciation and transformation in the natural environments. To assess the migration of antibiotics in the environments, it is crucial to understand the binding mechanisms between NOM and antibiotics, which is still unclear due to the limit of available research methods. In this study, the interaction between fulvic acids (FA), one of the main components of NOM, and sulfamethazine (SMZ) was characterized by nuclear magnetic resonance (NMR) combined with surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) technology. The parameters related to kinetics and thermodynamics of the interaction were determined, and the possible mechanisms driving the interaction were also proposed. In addition, density functional theory (DFT) was used to predict the binding mode between FA and SMZ to reveal the interaction mechanism. Results indicate that FA can effectively bound with SMZ to form a stable complex with a binding constant at the level of 10³ L/mol. The kinetic parameters including association and dissociation constants were 29.4 L/mol/s and 6.64 × 10⁻³ 1/s, respectively. Hydrophobic interaction might play significant roles in the binding interaction with ancillary contribution of π-π conjunction arising from the aromatic rings stacking of FA and SMZ.
Show more [+] Less [-]Selenium in surface waters of the lower Athabasca River watershed: Chemical speciation and implications for aquatic life Full text
2018
Donner, Mark W. | Cuss, Chad W. | Poesch, Mark | Sinnatamby, R Nilo | Shotyk, William | Siddique, Tariq
Selenium in the lower Athabasca River (Alberta, Canada) is of concern due to potential inputs from the weathering of shallow bitumen deposits and emissions from nearby surface mines and upgraders. Understanding the source of this Se, however, is complicated by contributions from naturally saline groundwater and organic matter-rich tributaries. As part of a two-year multi-disciplinary study to assess natural and anthropogenic inputs, Se and its chemical speciation were determined in water samples collected along a ∼125 km transect of the Athabasca River and associated tributaries. Selenium was also determined in the muscle of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, that were sampled from selected locations. Dissolved (<0.45 μm) Se in the Athabasca River was consistently low in 2014 (0.11 ± 0.02 μg L⁻¹; n = 14) and 2015 (0.16 ± 0.02 μg L⁻¹; n = 21), with no observable increase from upstream to downstream. Selenate was the predominant inorganic form (∼60 ng L⁻¹) and selenite was below detection limits at most locations. The average concentration of Se in Trout-perch muscle was 2.2 ± 0.4 mg kg⁻¹ (n = 34), and no significant difference (p > 0.05) was observed between upstream and midstream (industrial) or downstream reaches. Tributary waters contained very low concentrations of Se (typically < 0.1 μg L⁻¹), which was most likely present in the form of dissolved organic colloids.
Show more [+] Less [-]Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp Full text
2018
Bartlett, Adrienne J. | Hedges, Amanda M. | Intini, Kyna D. | Brown, Lisa R. | Maisonneuve, France J. | Robinson, Stacey A. | Gillis, Patricia L. | de Solla, Shane R.
Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 μg/L (acetamiprid) to >10,000 μg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 μg/L (acetamiprid) to 630 μg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 μg/L and a 96-h EC50 of 81 μg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 μg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 μg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 μg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.
Show more [+] Less [-]Photodegradation of fluorotelomer carboxylic 5:3 acid and perfluorooctanoic acid using zinc oxide Full text
2018
Abada, Bilal | Alivio, Theodore E.G. | Shao, Yiru | O'Loughlin, Thomas E. | Klemashevich, Cory | Banerjee, Sarbajit | Jayaraman, Arul | Chu, Kung-Hui
Occurrence of per- and poly-fluoroalkyl substances (PFASs) in the environment and biota has raised a great concern to public health because these compounds are persistent, bioaccumulative, and toxic. Biodegradation of polyfluoroalkyl substances, particularly long-chain fluorotelomer-based products, can lead to production of various short-chain PFASs, with 5:3 fluorotelomer carboxylic acid (referred as 5:3 FTCA hereafter) as a dominant polyfluoroalkyl metabolite. Perfluoroalkyl acids, particularly perfluorooctanoic acid (PFOA), are toxic and current removal methods are not cost-effective. This study reports the photodegradation of 5:3 FTCA and PFOA using ZnO as a photocatalyst under neutral pH and room temperature conditions. Under long UV wavelength (365 nm), both tetrapod and commercial ZnO can photodegrade 5:3 FTCA. Five removal products—perfluorohexanoic acid, perfluoropentanoic acid, perfluorobutyric acid, 5:2 fluorotelomer carboxylic acid (5:2 FTCA), and inorganic fluoride—were identified, with PFBA and F⁻ as dominant end products. SEM and XPS high-resolution scans on the surface of the utilized ZnO showed less units of CF₂ than that in 5:3 FTCA, supporting occurrence of photodegradation of 5:3 FTCA by ZnO. Defluorination of PFOA was not observed with ZnO only, but at pH 5 and in the co-presence of Fe-citrate. PFOA defluorination increased from 0.93% after 3 days of UV light exposure to 3.9% after additional 135 h under direct sunlight exposure. To the authors’ best knowledge, this is the first report studying ZnO-catalyzed photodegradation of 5:3 FTCA, and examining the Fe co-addition for PFOA defluorination.
Show more [+] Less [-]Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones Full text
2018
Shang, Bo | Feng, Zhaozhong | Li, Pin | Calatayud, Vicent
The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’) and 107 (P. euramericana cv. ‘74/76’) with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles.
Show more [+] Less [-]Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems Full text
2018
Su, Yu | Huang, Ji | Lu, Fenxiao | Tong, Xin | Niu, Junfeng | Mao, Liang
Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of ¹⁴C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl₂) electrolytes. Enhanced agglomeration occurred at high CaCl₂ concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca²⁺. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na⁺ competition for binding sites with Ca²⁺ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na⁺ and <5 mM Ca²⁺). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.
Show more [+] Less [-]Concentration of uranium in the soils of the west of Spain Full text
2018
Santos-Francés, Fernando | Gil Pacheco, Elena | Martínez-Graña, Antonio | Alonso Rojo, Pilar | Ávila Zarza, Carmelo | García Sánchez, Antonio
While determining the uranium concentration in the rock (background level) and soils on the Iberian Massif of western Spain, several geochemical anomalies were observed. The uranium concentration was much higher than the geochemical levels at these locations, and several uranium minerals were detected. The proposed uranium background levels for natural soils in the west of Salamanca Province (Spain) are 29.8 mg kg−1 in granitic rock and 71.2 mg kg−1 in slate. However, the soil near the tailings of abandoned mines exhibited much higher concentrations, between 207.2 and 542.4 mg kg−1.The calculation of different pollution indexes (Pollution Factor and Geo-accumulation Index), which reveal the conditions in the superficial horizons of the natural soils, indicated that a good percentage of the studied samples (16.7–56.5%) are moderately contaminated. The spatial distribution of the uranium content in natural soils was analysed by applying the inverse distance weighted method.The distribution of uranium through the horizons of the soils shows a tendency to accumulate in the horizons with the highest clay content. The leaching of uranium from the upper horizons and accumulation in the lower horizons of the soil could be considered a process for natural attenuation of the surface impacts of this radiogenic element in the environment. Environmental restoration is proposed in the areas close to the abandoned mining facilities of this region, given the high concentration of uranium. First, all the tailings and other mining waste would be covered with a layer of impermeable material to prevent leaching by runoff. Then, a layer of topsoil with organic amendments would be added, followed by revegetation with herbaceous plants to prevent surface erosion.
Show more [+] Less [-]