Refine search
Results 461-470 of 6,546
Immobilizing 1–3 nm Ag nanoparticles in reduced graphene oxide aerogel as a high-effective catalyst for reduction of nitroaromatic compounds Full text
2020
Shen, Yi | Zhu, Chao | Chen, Baoliang
To improve catalytic performance and stability of Ag nanoparticles (Ag NPs), a facile ultrasonication-assisted chemical reduction method was developed to fabricate reduced graphene oxide (rGO) aerogels loaded with 1–3 nm Ag NPs under the normal temperature and pressure. The ultrasonication facilitated the dispersion of Ag(I) in the form of silver ammonia and anchored onto GO nanosheets. Ag(I) and GO were simultaneously reduced to Ag(0) immobilizing onto 3D rGO hydrogels within the heterogeneous liquid phase, and ultimately formed 3D rGO-Ag NPs aerogels. The 3D rGO-Ag NPs aerogels displayed superb catalytic performance for the reduction of nitrobenzene (NB), 1,3-dinitrobenzene (DNB) and 4-nitrophenol (NP) into aniline, 1,3-diaminobenzene and 4-aminophenol, respectively. The individual reduction rate Kobs for NB, DNB and NP were 0.168 h−1, 0.109 h−1 and 0.092 h−1, which were much higher than those of other Ag NPs-based materials. Moreover, the immobilization of 1–3 nm Ag NPs in 3D rGO-Ag NPs was stable during the whole reduction reaction without aggregation and leaching. The high stability of Ag NPs in 3D rGO-Ag NPs and superb performance on catalytic reduction of nitroaromatic compounds (NACs) could be concluded into ultrasonication influence in the preparation procedure and synergistic effect of Ag NPs and 3D rGO in the catalytic reduction process. The simple ultrasonication-assisted chemical reduction approach provided a scaled-up application prospect in catalytic reduction of NACs by metal nanoparticle catalysts.
Show more [+] Less [-]Enhanced photocatalytic activity of ZnO/g-C3N4 composites by regulating stacked thickness of g-C3N4 nanosheets Full text
2020
Gao, Xingxing | Yang, Binzheng | Yao, Wenqing | Wang, Yajun | Zong, Ruilong | Wang, Jian | Li, Xianchun | Jin, Wenjie | Tao, Dongping
A self-assembly method was adopted to synthesize loading architecture of ZnO/g-C₃N₄ heterojunction composites by hybridization of g-C₃N₄ nanosheets and ZnO nanoparticles utilizing a refluxing method at a low temperature. More importantly, we provided a novel route to regulate the π-π restacking thickness of the g-C₃N₄ nanosheets among ZnO/g-C₃N₄ composites by the controlling the refluxing time in the ethanol solution, which can optimize the surface hybrid structure, optical response and photocatalytic activity. Among all of samples, ZnO/g-C₃N₄ composites with a refluxing 12 h showed the enhancement of photocatalytic activity. The enhanced visible light photocatalytic activity of ZCN-12 composites can be ascribed to the synergistic effects of the construction of hybrid structures, reduction of structural defects of g-C₃N₄ nanosheets and suitable π-π restacking g-C₃N₄ nanosheets loading thickness.
Show more [+] Less [-]Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos Full text
2020
Cao, Zigang | Huang, Yong | Xiao, Juhua | Cao, Hao | Peng, Yuyang | Chen, Zhiyong | Liu, Fasheng | Wang, Honglei | Liao, Xinjun | Lu, Huiqiang
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
Show more [+] Less [-]Degradation of PAHs during long range transport based on simultaneous measurements at Tuoji Island, China, and at Fukue Island and Cape Hedo, Japan Full text
2020
Shimada, Kojiro | Nohchi, Masayuki | Yang, Xiaoyang | Sugiyama, Taichi | Miura, Kaori | Takami, Akinori | Satō, Kei | Chen, Xuan | Kato, Shungo | Kajii, Yoshizumi | Meng, Fan | Hatakeyama, Shirō
We investigated the degradation of polycyclic aromatic hydrocarbons (PAHs) during long-range transport. Aerosols were collected simultaneously at remote sites on Tuoji Island, China; Fukue Island, Japan; and the Cape Hedo Atmosphere and Aerosol Measurement Station (CHAAMS), Okinawa, Japan in April, October, and December from 2012 to 2013. These remote sites were convenient for investigating the degradation of PAHs during long-range transport. PAHs were analyzed via gas chromatography/mass spectrometry. We identified air masses that passed over all sites and combined our measurements with a chemical transport model. We estimated the relative contributions of the PAHs at the three sites by normalizing the PAH concentrations to elemental carbon. Benzo[a]pyrene persisted in 5–16% of samples. The results of this study are consistent with laboratory studies in which secondary organic aerosol (SOA) coatings protected PAHs from degradation by ozone. We detected an inhibition of the degradation PAHs by SOA coatings by collecting PAHs simultaneously at the three sites. To elucidate the major sources of the SOAs, we carried out a positive matrix factorization analysis to identify the major sources of SOA coating, which controls the lifetime of PAHs. In spring and winter, the contribution of vehicle emissions was higher (46%) at Tuoji Island than at CHAAMS (13%). In contrast, the contribution of coal combustion was higher at CHAAMS (59%) than at Tuoji Island (28%). This result implies that during long-range transport, PAHs derived from coal combustion are more slowly degraded than PAHs derived from vehicle emissions. We found that the viscosity of SOA coatings derived from vehicle emissions in China was low, and the corresponding PAHs were rapidly degraded. In contrast, the viscosity of SOA coatings derived from coal combustion was high, and degradation of the corresponding PAHs was relatively slow. These results imply that PAHs derived from coal combustion have long lifetime.
Show more [+] Less [-]Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum Full text
2020
Zhai, Weiwei | Dai, Yuxia | Zhao, Wenliang | Yuan, Honghong | Qiu, Dongsheng | Chen, Jingpan | Gustave, Williamson | Maguffin, Scott Charles | Chen, Zheng | Liu, Xingmei | Tang, Xianjin | Xu, Jianming
In situ immobilization of heavy metals in contaminated soils using industrial by-products is an attractive remediation technique. In this work, titanium gypsum (TG) was applied at two levels (TG-L: 0.15% and TG-H: 0.30%) to simultaneously reduce the uptake of cadmium (Cd), lead (Pb) and arsenic (As) in rice grown in heavy metal contaminated paddy soils. The results showed that the addition of TG significantly decreased the pH and dissolved organic carbon (DOC) in the bulk soil. TG addition significantly improved the rice plants growth and reduced the bioavailability of Cd, Pb and As. Particularly, bioavailable Cd, Pb and As decreased by 35.2%, 38.1% and 38.0% in TG-H treatment during the tillering stage, respectively. Moreover, TG application significantly reduced the accumulation of Cd, Pb and As in brown rice. Real-time PCR analysis demonstrated that the relative abundance of sulfate-reducing bacteria increased with the TG application, but not for the iron-reducing bacteria. In addition, 16S rRNA sequencing analysis revealed that the relative abundances of heavy metal-resistant bacteria such as Bacillus, Sulfuritalea, Clostridium, Sulfuricella, Geobacter, Nocardioides and Sulfuricurvum at the genus level significantly increased with the TG addition. In conclusion, the present study implied that TG is a potential and effective amendment to immobilize metal(loid)s in soil and thereby reduce the exposure risk of metal(loid)s associated with rice consumption.
Show more [+] Less [-]A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris Full text
2020
Wang, Lei | Huang, Xulei | Sun, Weiling | Too, Hui Zhen | Laserna, Anna Karen Carrasco | Li, Sam Fong Yau
To compare aquatic organisms’ responses to the toxicity of copper oxide (CuO) nanoparticles (NPs) with those of CuO microparticles (MPs) and copper (Cu) ions, a global metabolomics approach was employed to investigate the changes of both polar and nonpolar metabolites in microalga Chlorella vulgaris after 5-day exposure to CuO NPs and MPs (1 and 10 mg/L), as well as the corresponding dissolved Cu ions (0.08 and 0.8 mg/L). Unchanged growth, slight reactive oxygen species production, and significant membrane damage (at 10 mg/L CuO particles) in C. vulgaris were demonstrated. A total of 75 differentiated metabolites were identified. Most metabolic pathways perturbed after CuO NPs exposure were shared by those after CuO MPs and Cu ions exposure, including accumulation of chlorophyll intermediates (max. 2.4–5.2 fold), membrane lipids remodeling for membrane protection (decrease of phosphatidylethanolamines (min. 0.6 fold) and phosphatidylcholines (min. 0.2–0.7 fold), as well as increase of phosphatidic acids (max. 1.5–2.9 fold), phosphatidylglycerols (max. 2.2–2.3 fold), monogalactosyldiacylglycerols (max. 1.2–1.4 fold), digalactosylmonoacylglycerols (max. 1.9–3.8 fold), diacylglycerols (max. 1.4 fold), lysophospholipids (max. 1.8–3.0 fold), and fatty acids (max. 3.0–6.2 fold)), perturbation of glutathione metabolism induced by oxidative stress, and accumulation of osmoregulants (max. 1.3–2.6 fold) to counteract osmotic stress. The only difference between metabolic responses to particles and those to ions was the accumulation of fatty acids oxidation products: particles caused higher fold changes (particles/ions ratio 1.9–3.0) at 1 mg/L and lower fold changes (particles/ions ratio 0.4–0.7) at 10 mg/L compared with ions. Compared with microparticles, there was no nanoparticle-specific pathway perturbed. These results confirm the predominant role of dissolved Cu ions on the toxicity of CuO NPs and MPs, and also reveal particle-specific toxicity from a metabolomics perspective.
Show more [+] Less [-]Variations in the concentrations of macro- and trace elements in two grasses and in the rhizosphere soil during a day Full text
2020
Shtangeeva, Irina | Vīksna, Arturs | Bērtiņš, Māris | Ryumin, Alexander | Grebnevs, Vladlens
The aim of the research was to study short-term variations in concentrations of 17 elements in two widely distributed natural plant species (couch grass and plantain) and in the rhizosphere soil of the plants. The plant and soil samples were collected in a field from a small site over a daytime. In the course of the day, the variations of the total amounts of C, N, and H in the rhizosphere soil were rather marked and different for the soils taken from roots of plantain and couch grass. The concentrations of some other elements in the rhizosphere soil of the plants varied in a similar way. The short-term variations of element concentrations in roots and leaves of the plants were also rather large. In many cases, a decrease of element concentration in roots correlated with an increase of its concentration in leaves. Although couch grass and plantain were collected simultaneously and from the same site, mean concentrations of many elements in the two plant species were statistically significantly different. This may be result of the fact that the plants belong to different clades. The differences between concentrations of most part of elements in roots and leaves of the plants were also statistically significant. The concentrations of many trace elements were higher in roots than in leaves, while the concentrations of essential plant nutrients were often higher in leaves compared to roots. The distribution of elements between different plant parts were not the same in couch grass and plantain.
Show more [+] Less [-]Prevention and control of COVID-19 in nursing homes, orphanages, and prisons Full text
2020
Wang, Jiao | Yang, Wenjing | Pan, Lijun | Ji, John S. | Shen, Jin | Zhao, Kangfeng | Ying, Bo | Wang, Xianliang | Zhang, Liubo | Wang, Lin | Shi, Xiaoming
As the number of Coronavirus Disease (2019) (COVID-19) cases increase globally, countries are taking more aggressive preventive measures against this pandemic. Transmission routes of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) include droplet and contact transmissions. There are also evidence of transmission through aerosol generating procedures (AGP) in specific circumstances and settings. Institutionalized populations without mobility and living in close proximity with unavoidable contact are especially vulnerable to higher risks of COVID-19 infection, such as the elderly in nursing homes, children in orphanages, and inmates in prisons. In these places, higher prevention and control measures are needed. In this study, we proposed prevention and control strategies for these facilities and provided practical guidance for general measures, health management, personal protection measures, and prevention measures in nursing homes, orphanages, and prisons, respectively.
Show more [+] Less [-]Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide Full text
2020
Li, Dan | Zhong, Yin | Zhu, Xifen | Wang, Heli | Yang, Weiqiang | Deng, Yirong | Huang, Weilin | Peng, Ping’an
Tris(2-chloroethyl) phosphate (TCEP) is a widely found emerging pollutant due to its heavy usage as a flame retardant. It is chemically stable and is very difficult to removal from water. The goal of this study was to explore whether iron monosulfide (FeS) can be used for reductive transformation of TCEP as FeS can react with a variety of halogenated organic contaminants. We used batch reactor systems to quantify the transformation reactions in the absence and presence of cetyltrimethylammonium bromide (CTAB, a common surfactant in aquatic environments). The results showed that, in the presence of CTAB (100 mg L⁻¹), FeS exhibited much greater reactivity towards TCEP as 93% of initial TCEP had been transformed within 14 d of reaction. In the absence of CTAB, it required 710 d of reaction to achieve 97.3% reduction of initial TCEP. The enhancement of CTAB on TCEP transformation rate could be due to the facts that CTAB could stabilize FeS suspension against aggregation, protect FeS from rapid oxidation, and increase surface adsorption of TCEP on FeS. XPS analysis showed that both Fe(II) and S(-II) species on the FeS surface were involved in the reductive transformation of TCEP. Analysis of transformation products revealed that TCEP was reductively transformed into bis(2-chloroethyl) phosphate (BCEP), Cl⁻ and C₂H₄. These findings showed that FeS may play an important role in the reductive transformation of TCEP when TCEP coexisting with CTAB in aquatic environments.
Show more [+] Less [-]Water-soluble fluorine detoxification mechanisms of spent potlining incineration in response to calcium compounds Full text
2020
Zhang, Gang | Sun, Guang | Chen, Zihong | Evrendilek, Fatih | Liu, Jingyong
In this study, the detoxification mechanisms of water-soluble fluorine in the bottom ash and the distribution of fluorine during the spent potlining (SPL) incineration were characterized in response to four calcium compounds using an experimental tube furnace. CaSiO₃, CaO, Ca(OH)₂, and CaCO₃-assisted SPL incineration converted NaF to low toxicity compounds in the bottom ash yielding a conversion range of 54.24–99.45% relative to the individual SPL incineration. The two main mechanisms of the fluorine transformation were the formations of CaF₂ and Ca₄Si₂O₇F₂. The fluorine transformation efficiency was greater with CaSiO₃ than CaO, Ca(OH)₂, and CaCO₃. Our simulations demonstrated that SiO₂ enhanced the conversion of NaF. The fluorine leaching content of the bottom ash was estimated at 13.71 mg⋅L⁻¹ after the SPL co-incineration with CaSiO₃ (Ca:F = 1.2:1). The acid-alkali solutions had no significant effect on the fluorine leaching content of the bottom ash when 3 ≤ pH ≤ 12. Fluorine during the SPL co-incineration with CaSiO₃ (Ca:F = 1.2:1) at 850 °C for 60 min was partitioned into 83.37, 13.90, and 2.72% in the bottom ash, fly ash, and flue gas, respectively. The transformation and detoxification mechanisms of water-soluble fluorine provide new insights into controls on fluorine emission from the SPL incineration.
Show more [+] Less [-]