Refine search
Results 471-480 of 4,298
Phthalate metabolites related to infertile biomarkers and infertility in Chinese men
2017
Liu, Liangpo | Wang, Heng | Tian, Meiping | Zhang, Jie | Panuwet, Parinya | D'Souza, Priya Esilda | Barr, Dana Boyd | Huang, Qingyu | Xia, Yankai | Shen, Heqing
Although in vitro and in vivo laboratory studies have demonstrated androgen and anti-androgen effects on male reproduction from phthalate exposures, human studies still remain inconsistent. Therefore, a case-control study (n = 289) was conducted to evaluate the associations between phthalate exposures, male infertility risks, and changes in metabolomic biomarkers. Regional participants consisted of fertile (n = 150) and infertile (n = 139) males were recruited from Nanjing Medical University’ affiliated hospitals. Seven urinary phthalate metabolites were measured using HPLC-MS/MS. Associations between levels of phthalate metabolites, infertility risks, and infertility-related biomarkers were statistically evaluated. MEHHP, one of the most abundant DEHP oxidative metabolites was significantly lower in cases than in controls (p = 0.039). When using the 1st quartile range as a reference, although statistically insignificant for odds ratios (ORs) of the 2nd, 3rd, and 4th quartiles (OR (95% CI) = 1.50 (0.34–6.48), 0.70 (0.14–3.52) and 0.42 (0.09–2.00), respectively), the MEHHP dose-dependent trend of infertility risk expressed as OR decreased significantly (p = 0.034). More interestingly, most of the phthalate metabolites, including MEHHP, were either positively associated with fertile prevention metabolic biomarkers or negatively associated with fertile hazard ones. Phthalate metabolism, along with their activated infertility-related biomarkers, may contribute to a decreased risk of male infertility at the subjects’ ongoing exposure levels. Our results may be illustrated by the low-dose related androgen effect of phthalates and can improve our understanding of the controversial epidemiological results on this issue.
Show more [+] Less [-]Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments
2017
Lin, Lina | Gao, Minling | Qiu, Weiwen | Wang, Di | Huang, Qing | Song, Zhengguo
The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC1 and FMBC2) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P < 0.05), and FMBC2 performed better than FMBC1 did. Furthermore, exposure to 2% FMBC2 decreased the total As concentration in the grain by 68.9–78.3%. The addition of FMBC increased the ratio of essential amino acids in the grain, decreased As availability in the soil, and significantly increased the Fe and Mn plaque contents. The reduced As accumulation in rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil.
Show more [+] Less [-]Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions
2017
Ruiz, J. | Kaiser, A.S. | Lucas, M.
Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks.Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM10, emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations.Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed.
Show more [+] Less [-]Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991–2012
2017
Herrick, Robert L. | Buckholz, Jeanette | Biro, Frank M. | Calafat, Antonia M. | Ye, Xiaoyun | Xie, Changchun | Pinney, Susan M.
Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water.Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources.We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples.In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40–60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000–2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012.Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209–666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure.
Show more [+] Less [-]Integrative characterization of chronic cigarette smoke-induced cardiopulmonary comorbidities in a mouse model
2017
Kemény, Ágnes | Csekő, Kata | Szitter, István | Varga, Zoltán V. | Bencsik, Péter | Kiss, Krisztina | Halmosi, Róbert | Deres, László | Erős, Krisztián | Perkecz, Anikó | Kereskai, László | László, Terézia | Kiss, Tamás | Ferdinandy, Péter | Helyes, Zsuzsanna
Cigarette smoke-triggered inflammatory cascades and consequent tissue damage are the main causes of chronic obstructive pulmonary disease (COPD). There is no effective therapy and the key mediators of COPD are not identified due to the lack of translational animal models with complex characterization. This integrative chronic study investigated cardiopulmonary pathophysiological alterations and mechanisms with functional, morphological and biochemical techniques in a 6-month-long cigarette smoke exposure mouse model. Some respiratory alterations characteristic of emphysema (decreased airway resistance: Rl; end-expiratory work and pause: EEW, EEP; expiration time: Te; increased tidal mid-expiratory flow: EF50) were detected in anaesthetized C57BL/6 mice, unrestrained plethysmography did not show changes. Typical histopathological signs were peribronchial/perivascular (PB/PV) edema at month 1, neutrophil/macrophage infiltration at month 2, interstitial leukocyte accumulation at months 3–4, and emphysema/atelectasis at months 5–6 quantified by mean linear intercept measurement. Emphysema was proven by micro-CT quantification. Leukocyte number in the bronchoalveolar lavage at month 2 and lung matrix metalloproteinases-2 and 9 (MMP-2/MMP-9) activities in months 5–6 significantly increased. Smoking triggered complex cytokine profile change in the lung with one characteristic inflammatory peak of C5a, interleukin-1α and its receptor antagonist (IL-1α, IL-1ra), monokine induced by gamma interferon (MIG), macrophage colony-stimulating factor (M-CSF), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) at months 2–3, and another peak of interferon-γ (IFN-γ), IL-4, 7, 13, 17, 27 related to tissue destruction. Transient systolic and diastolic ventricular dysfunction developed after 1–2 months shown by significantly decreased ejection fraction (EF%) and deceleration time, respectively. These parameters together with the tricuspid annular plane systolic excursion (TAPSE) decreased again after 5–6 months. Soluble intercellular adhesion molecule-1 (sICAM-1) significantly increased in the heart homogenates at month 6, while other inflammatory cytokines were undetectable. This is the first study demonstrating smoking duration-dependent, complex cardiopulmonary alterations characteristic to COPD, in which inflammatory cytokine cascades and MMP-2/9 might be responsible for pulmonary destruction and sICAM-1 for heart dysfunction.
Show more [+] Less [-]Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms
2017
Ren, Jiao | Wang, Xiaoping | Wang, Chuanfei | Gong, Ping | Wang, Xiruo | Yao, Tandong
Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: Distribution, partitioning, origin tracing and ecological risk assessment
2017
Zhang, Jiamei | Liu, Guijian | Wang, Rujing | Huang, He
The polycyclic aromatic hydrocarbons (PAHs) concentrations in the water, suspended particulate matter (SPM) and sediment from the middle reaches of Huai River were analyzed by a gas chromatograph-mass spectrometer (GC-MS). The mean concentrations for the sum of 16 PAHs (∑16 PAHs) in the water, SPM and sediment were 1204 ng/L, 3192 ng/g (dry weight; dw), and 7955 ng/g (dw), respectively. Along the vertical profiles of water columns, higher ∑16 PAHs levels were seen in surface and bottom water layers and co-located SPM. The PAHs distribution in water and SPM is found to be controlled by organic carbon. Based on the statistic correlations of the organic carbon normalized partition coefficients (lgKOC) and octanol-water partition coefficient (lgKOW), we observed that the calculated partition coefficients do not increase as large as that would be expected from the increase of hydrophobicity. The principal component analysis suggests that coal combustion and the petroleum refinery were the primary PAHs contributors in the studied water-SPM-sediment system. The high ecological risks of PAHs in studied system highlight the urgent needs for remedial actions.
Show more [+] Less [-]Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China
2017
Guan, Qingyu | Cai, Ao | Wang, Feifei | Yang, Liqin | Xu, Chuanqi | Liu, Zeyu
To investigate the spatial and temporal behaviors of particulate matter in Lanzhou, Jinchang and Jiayuguan during 2014, the hourly concentrations of PM2.5 and PM10 were collected from the Ministry of Environmental Protection (MEP) in this study. The analysis indicated that the mean annual PM10 (PM2.5) concentrations during 2014 were 115 ± 52 μg/m3 (57 ± 28 μg/m3), 104 ± 75 μg/m3 (38 ± 22 μg/m3) and 114 ± 72 μg/m3 (32 ± 17 μg/m3) in Lanzhou, Jinchang and Jiayuguan, respectively, all of which exceeded the Chinese national ambient air quality II standards for PM. Higher values for both PM fractions were generally observed in spring and winter, and lower concentrations were found in summer and autumn. Besides, the trend of seasonal variation of particulate matter (PM) in each city monitoring site is consistent with the average of the corresponding cities. Anthropogenic activities along with the boundary layer height and wind scale contributed to diurnal variations in PM that varied bimodally (Lanzhou and Jinchang) or unimodally (Jiayuguan). With the arrival of dust events, the PM10 concentrations changed dramatically, and the PM10 concentrations during dust storm events were, respectively, 19, 43 and 17 times higher than the levels before dust events in Lanzhou, Jinchang and Jiayuguan. The ratios (PM2.5/PM10) were lowest, while the correlations were highest, indicating that dust events contributed more coarse than fine particles, and the sources of PM are similar during dust storms. The relationships between local meteorological parameters and PM concentrations suggest a clear association between the highest PM concentrations, with T ≤ 7 °C, and strong winds (3–4 scale). However, the effect of relative humidity is complicated, with more PM10 and PM2.5 exceedances being registered with a relative humidity of less than 40% and 40–60% in Lanzhou, while higher exceedances in Jinchang appeared at a relative humidity of 80–100%.
Show more [+] Less [-]Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna
2017
Tan, Cheng | Wang, Wen-Xiong
Increasing applications of titanium dioxide nanoparticles (nano-TiO2) have intensified the risk of environmental contamination. Since nano-TiO2 can absorb metals and be consumed as ‘food’ by zooplankton but also can interact with phytoplankton, they could significantly disturb the existing metal assimilation patterns. In the present study, we quantified the dietary assimilation of Cd and Zn from nano-TiO2 and algae (Chlamydomonas reinhardtii) at comparable particle concentrations as well as in complex food environment (variable food quality and quantity) in a freshwater zooplankton Daphnia magna using the radiotracer technique. For both nano-TiO2 and algae as food, the feeding food quality and depuration food quantity significantly affected the assimilation efficiencies (AEs) of Cd and Zn. At feeding food quantity of 1 mg/L to 10 mg/L without food in depuration, the AEs of Cd and Zn from nano-TiO2 were lower than those from algae. When food was added during depuration, the influences of nano-TiO2 on metal AEs were variable due to the differential effects of food quantity on the gut passage of nano-TiO2 and algae. Furthermore, mixed nano-TiO2 and algae had the lowest metal AEs compared to sole nano-TiO2 or algae as a result of interaction between nano-TiO2 and algae during feeding. Overall, this study showed the distinguishing metal AEs between nano-TiO2 and algae, and that nano-TiO2 could significantly reduce the existing metal AEs from algae. More attention should be paid to the potential roles of nano-TiO2 in disturbing metal assimilation in the environmental risk assessments of nanoparticles.
Show more [+] Less [-]Assessing temporal trends of trace metal concentrations in mosses over France between 1996 and 2011: A flexible and robust method to account for heterogeneous sampling strategies
2017
Lequy, Emeline | Dubos, Nicolas | Witté, Isabelle | Pascaud, Aude | Sauvage, Stéphane | Leblond, Sébastien
Air quality biomonitoring has been successfully assessed using mosses for decades in Europe, particularly regarding heavy metals (HM). Assessing robust temporal variations of HM concentrations in mosses requires to better understand to what extent they are affected by the sampling protocol and the moss species. This study used the concentrations of 14 elements measured during four surveys over 15 years in France. Analyses of variance (ANOVA) and a modeling approach were used to decipher temporal variations for each element and adjust them with parameters known to affect concentrations. ANOVA followed by post hoc analyses did not allow to estimate clear trends. A generalized additive mixed modeling approach including the sampling period, the collector and the moss species, plus quadratic effects, was used to analyze temporal variations on repeated sampling sites. This approach highlighted the importance of accounting for non-linear temporal variations in HM, and adjusting for confounding factors such as moss species, species-specific differences between sampling periods, collector and methodological differences in sampling campaigns. For instance, lead concentrations in mosses decreased between 1996 and 2011 following quadratic functions, with faster declines for the most contaminated sites in 1996. On the other hand, other HM showed double trends with U-shaped or hill-shaped curves. The effect of the moss was complex to handle and our results advocate for using one moss species by repeated site to better analyze temporal variations.
Show more [+] Less [-]