Refine search
Results 491-500 of 3,991
Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion
2016
Diaz-de-Quijano, Maria | Joly, Daniel | Gilbert, Daniel | Toussaint, Marie-Laure | Franchi, Marielle | Fallot, Jean-Michel | Bernard, Nadine
Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems.
Show more [+] Less [-]Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure in China
2016
Ni, Hong-Gang | Lu, Shao-You | Mo, Ting | Zeng, Hui
Based on the most widely used plastics in China, five plastic wastes were selected for investigation of brominated flame retardant (BFR) emission behaviors during open burning. Considerable variations were observed in the emission factors (EF) of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) from the combustion of different plastic wastes. Distribution of BFR output mass showed that ΣPBDE was emitted mainly by the airborne particle (51%), followed by residual ash (44%) and the gas phase (5.1%); these values for ΣHBCD were 62%, 24%, and 14%, respectively. A lack of mass balance after the burning of the plastic wastes for some congeners (output/input mass ratios>1) suggested that formation and survival exceeded PBDE decomposition during the burns. However, that was not the case for HBCD. A comparison with literature data showed that the open burning of plastic waste is major source of PBDE compared to regulated combustion activities. Even for state-of-the-art waste incinerators equipped with sophisticated complex air pollution control technologies, BFRs are released on a small scale to the environment. According to our estimate, ΣPBDE release to the air and land from municipal solid waste (MSW) incineration plants in China in 2015 were 105 kg/year and 7124 kg/year. These data for ΣHBCD were 25.5 and 71.7 kg/year, respectively. Considering the fact that a growing number of cities in China are switching to incineration as the preferred method for MSW treatment, our estimate is especially important. This study provides the first data on the environmental exposure of BFRs emitted from MSW incineration in China.
Show more [+] Less [-]Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent
2016
Mason, Sherri A. | Garneau, Danielle | Sutton, Rebecca | Chu, Yvonne | Ehmann, Karyn | Barnes, Jason | Fink, Parker | Papazissimos, Daniel | Rogers, Darrin L.
Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the ‘microbeads’ found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge.
Show more [+] Less [-]Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride
2016
Zhang, Shun | Niu, Qiang | Gao, Hui | Ma, Rulin | Lei, Rongrong | Zhang, Cheng | Xia, Tao | Li, Pei | Xu, Chunyan | Wang, Chao | Chen, Jingwen | Dong, Lixing | Zhao, Qian | Wang, Aiguo
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague–Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity.
Show more [+] Less [-]Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios
2016
Di Turo, Francesca | Proietti, Chiara | Screpanti, Augusto | Fornasier, M Francesca | Cionni, Irene | Favero, Gabriele | De Marco, Alessandra
The interaction of pollutants with Cultural Heritage materials leads to artworks and materials degradation and loss, causing an unpriceless damage. This works aims to estimate the impacts of air pollution and meteorological conditions on limestone, copper and bronze and represents the European risk assessment for corrosion of Cultural Heritage materials. The measures and policies for atmospheric pollution reduction have cut off the SO2 concentration and consequently its impact on materials is drastically reduced. Indeed, in 1980 the number of UNESCO sites in danger was extremely high (94% for limestone, 54% for copper and 1% for bronze) while in 2010 these sites did not exceed the tolerable value of surface recession and corrosion. However, some problem related to air pollution persists. In particular, Random Forest Analysis (RFA), highlights PM10 as the main responsible for materials corrosion, in 2010. Two scenarios in 2030 have been tested, highlighting that the corrosion levels of limestone, copper and bronze exceed the tolerable limits only in the Balkan area and Turkey. Our results show the importance in the air quality modelling as a powerful tool for the UNESCO sites conservation.
Show more [+] Less [-]Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules
2016
Chayawan, | Vikas,
This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment.
Show more [+] Less [-]A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system
2016
Lin, Hui | Jin, Danfeng | Freitag, Thomas E. | Sun, Wanchun | Yu, Qiaogang | Fu, Jianrong | Ma, Junwei
Antibiotics entering the soil likely disturb the complex regulatory network of the soil microbiome, which is closely associated with soil quality and ecological function. This study investigated the effects of tetracycline (TC), sulfamonomethoxine (SMM), ciprofloxacin (CIP) and their combination (AM) on the bacterial community in a soil-microbe-plant system and identified the main bacterial responders. Antibiotic effects on the soil microbiome depended on antibiotic type and exposure time. TC resulted in an acute but more rapidly declining effect on soil microbiome while CIP and SMM led to a delayed antibiotic effect. The soil exposed to AM presented a highly similar bacterial structure to that exposed to TC rather than to SMM and CIP. TC, SMM and CIP had their own predominantly impacted taxonomic groups that include both resistance and sensitive bacteria. The antibiotic sensitive responders predominantly distributed within the phylum Proteobacteria. The potential bacteria resistant to each antibiotic exhibited phyla preference to some extent, particularly those resistant to TC. CIP and SMM resistance in soil was increased with exposure time while TC resistance gave the opposite result. Overall, the work extended the understanding of antibiotic effects on soil microbiome after introduced into the soil during greenhouse vegetable cultivation.
Show more [+] Less [-]Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient
2016
Oikawa, Shimpei | Ainsworth, Elizabeth A.
Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37–116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3].
Show more [+] Less [-]p53-dependent apoptosis contributes to di-(2-ethylhexyl) phthalate-induced hepatotoxicity
2016
Ha, Mei | Wei, Li | Guan, Xie | Li, Lianbing | Liu, Changjiang
Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread non-occupational human exposure through multiple routes and media. DEHP has various deleterious effects including hepatotoxicity. p53 protein is a central sensor in cell apoptosis. In order to clarify the roles of p53 in DEHP-induced hepatotoxicity, Sprague–Dawley (SD) rats were dosed daily with DEHP by gavage for 30 days; BRL cells (rat liver cell line) were treated with DEHP for 24 h after pretreatment with NAC or small interfering RNA (siRNA). Results indicated that after exposure to DEHP, hepatic histological changes such as hepatocyte edema, vacuolation and hepatic sinusoidal dilation, and increased apoptosis index were observed. In the liver, DEHP induced oxidative stress and DNA damage, which activated p53 in vivo and in vitro. Pretreatment with NAC significantly reduced ROS level and p53 expression in BRL cells. The suppressed Mdm2 also contributed to p53 accumulation. Activated p53 mediated hepatocyte apoptosis via the intrinsic mitochondrial pathway, inhibiting anti-apoptotic Bcl-2 and Bcl-xL and inducing pro-apoptotic Bax, cytochrome c and caspases. In p53-silenced BRL cells, hepatocyte apoptosis mediated by p53 was attenuated. PCNA protein level was upregulated after p53 gene silencing. However, the Fas/FasL apoptotic pathway did not exhibit activated signs in DEHP-caused hepatotoxicity. Taken together, DEHP-caused oxidative stress and Mdm2 downregulation contribute to p53 activation. The p53-dependent apoptotic pathway plays critical and indispensable roles in DEHP-induced hepatotoxicity, while the Fas/FasL pathway does not involve in this molecular event.
Show more [+] Less [-]Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils
2016
Braaten, Hans Fredrik Veiteberg | de Wit, Heleen A.
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg.
Show more [+] Less [-]