Refine search
Results 4901-4910 of 4,938
Crocin mitigates γ-rays-induced hepatic toxicity in rats Full text
2019
Tawfik, Sameh Soliman | Elkady, Ahmed Amer | El khouly, Wael Aly
Crocin (C₄₄H₆₄O₂₄) is an isolated bioactive molecule of saffron extract. It has different pharmacological effects such as antioxidant and anti-inflammatory activities. In the present study, radioprotective property of crocin was investigated in the rat liver. Thirty-two rats were equally divided into four groups: (1) control (normal saline), (2) crocin (200 mg/kg), (3) γ-rays (6Gy), and (4) crocin plus γ-rays-treated groups. The liver histopathology, serum transaminases (ALT and AST), alkaline phosphatase (ALP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) have been assessed. The histopathological result of hepatic tissue in group 3 showed hydropic degeneration and this progressed to focal or spotty necrosis through the lobule. Moreover, some sinusoids are distended with blood or with leukocytic infiltrations. Other cases in group 3 showed periportal leukocytic infiltrations and necrosis extended out from the portal tract to involve hepatic lobules with fibrinous necrosis in portal vessels, while the examination of hepatic tissues of group 4 showed reduced deformities, irregular arrangement, congested hepatic vessels, and necrosis in hepatocytes. The results also showed significant decreased level of liver function activities, inflammatory markers, lipid peroxidation, and increased levels of liver antioxidants enzymes in group 4. Crocin showed moderate protective effect against γ-rays-induced liver toxicity. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. Graphical abstract .
Show more [+] Less [-]Estimation of the economic loss due to irrigation water use inefficiency in Tunisia Full text
2019
Chebil, Ali | Souissi, Asma | Frija, Aymen | Stambouli, Talel
The main objective of this study is to estimate the total economic loss due to inefficient use of irrigation water in Tunisia. Several approaches have been used for this purpose. The optimal level of water application for different crops is calculated using the actual crop evapotranspiration which is based on FAO-56 method. The residual imputation and yield comparison methods have been used to estimate the economic value of irrigation water for different irrigated crops in different bioclimatic areas. For the empirical analysis, primary data were obtained from a series of surveys that covered 78% of the total irrigated areas and were collected within the framework of the “Virtual Water and Food Security in Tunisia project” (2013–2015). Secondary data about land distribution of crops in Tunisia were taken from the Ministry of Agriculture (2016). Around 724 farms were randomly sampled considering their bioclimatic area, farm type, and production system. The survey included the main 20 crops produced in Tunisia. Results show that most of farmers are either under or over utilizing irrigation water. The value of total direct economic losses, at the country level, of both types of water inefficiencies, was estimated to around 470 million Tunisian Dinars. Therefore, an improvement of water use efficiency at field level through dissemination of information/knowledge on irrigation scheduling and crop water requirements by extension services to farmers is needed to reduce this huge economic loss, reach higher sustainability in water use and improve food security.
Show more [+] Less [-]Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon Full text
2019
Silva, Carla Patrícia | Jaria, Guilaine | Otero, Marta | Esteves, Valdemar I. | Calisto, Vânia
A waste-based alternative activated carbon (AAC) was produced from paper mill sludge under optimized conditions. Aiming its application in tertiary wastewater treatment, AAC was used for the removal of carbamazepine, sulfamethoxazole, and paroxetine from biologically treated municipal wastewater. Kinetic and equilibrium adsorption experiments were run under batch operation conditions. For comparison purposes, they were also performed in ultrapure water and using a high-performance commercial AC (CAC). Adsorption kinetics was fast for the three pharmaceuticals and similar onto AAC and CAC in either wastewater or ultrapure water. However, matrix effects were observed in the equilibrium results, being more remarkable for AAC. These effects were evidenced by Langmuir maximum adsorption capacities (qₘ, mg g⁻¹): for AAC, the lowest and highest qₘ were 194 ± 10 (SMX) and 287 ± 9 (PAR), in ultrapure water, and 47 ± 1 (SMX) and 407 ± 14 (PAR), in wastewater, while for CAC, the lowest and highest qₘ were 118 ± 7 (SMX) and 190 ± 16 (PAR) in ultrapure water and 123 ± 5 (SMX) and 160 ± 7 (CBZ) in wastewater. It was found that the matrix pH played a key role in these differences by controlling the surface electrostatic interactions between pharmaceutical and AC. Overall, it was evidenced the need of adsorption results in real matrices and demonstrated that AAC is a promising option to be implemented in tertiary wastewater treatments for pharmaceuticals’ removal. Graphical abstract Production of an alternative activated carbon (AC) comparing favourably with a commercial AC in the removal of neutral and positive pharmaceuticals from wastewater
Show more [+] Less [-]Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna Full text
2019
Gruss, Iwona | Twardowski, Jacek P. | Latawiec, Agnieszka | Medyńska-Juraszek, Agnieszka | Królczyk, Jolanta
Biochar as a carbon-rich highly porous substance has been proposed for use in agriculture and horticulture as a soil amendment. One of the main concerns of this application of biochar is its potential contamination with heavy metals (HMs) and polycyclic aromatic hydrocarbons. The aim of this research was to access the environmental risk of biochar used as a soil amendment on soil mesofauna (mites and springtails). We conducted both field and laboratory experiments with the use of wood-chip biochar from low-temperature (300 °C) flash pyrolysis. Biochar was free from polycyclic aromatic hydrocarbons (PAH), and the concentration of all tested toxic compounds was very low or even under the level of detection. Both the results of field and laboratory studies show no toxic effects on soil mesofauna. In the field studies, the biochar application of 50 t/ha in maize and oilseed rape crops significantly increased the mean number of mesofauna. This change probably resulted from improved soil chemical properties (in particular organic carbon content and cation exchange capacity) upon biochar addition. The results of the avoidance test with the use of springtail species Folsomia candida showed the possible short-term toxicity risk from a dose of 5%. The results of the reproduction test indicate the negative response of F. candida from the rate of 25% (higher than the field dose, which corresponds to 10% in laboratory tests). The reason for the short-term toxicity might be the considerable increase in soil pH after biochar addition. To our knowledge, this is the first study that has looked so widely into the effect of biochar on soil mesofauna. We encourage further studies into the risk assessment of biochar on soil organisms in both a controlled laboratory environment and in the open field.
Show more [+] Less [-]Influence of earthworm bioturbation on metals phytoavailability and human gastric bioaccessibility Full text
2019
Lévêque, Thibaut | Dumat, Camille | Lagier, Laura | Schreck, Eva | Ruales, Jenny | Capowiez, Yvan
At the global scale, urban agriculture is increasingly developing in cities due to demographic growth and sustainable food concerns. But, urban soils are frequently polluted with metals. In urban gardens, organic matter is also commonly added both to valorize organic household waste and to promote biophysicochemical fertility. As earthworms promote the decomposition and the recycling of soil organic matter, they can also influence the biogeochemical cycle of metals in urban polluted soils. In order to produce safe vegetables in urban areas, it is crucial to highlight the mechanisms involved in complex soil-earthworm-plant ecosystems. An experiment was set up to examine these relationships using lettuce cultivated in controlled conditions with RHIZOtest® devices. Thanks to the RHIZOtest® devices, metal transfer and bioaccessibility were for the first time compared for urban polluted soil without (1—urban soil polluted with Pb, Cd, Cu, and Zn: essential or toxic metals currently found in environment, SNB) and with bioturbation (2—this metal-polluted soil subjected to earthworm bioturbation, SB) and earthworm casts (3—earthworm casts produced in this polluted soil and naturally enriched in organic matter and microorganisms, T). Metal concentration, phytoavailability, and human gastric bioaccessibility were determined in the different samples. Results showed that earthworm bioturbation increased the phytoavailability of all the metals. For the experimental condition SB, the phytoavailability of metals was increased up to 75% compared to SNB. In addition, surprisingly, metal phytoavailability was always superior in SB compared to earthworm casts (T). Moreover, earthworms led to an increase in Zn gastric bioaccessibility up to 10% in the soils in the same way as for phytoavailability, meaning Zn bioaccessibility in SB > T > SNB, whereas it remained unchanged in the lettuces. These data are important to promote sustainable agriculture activities in urban areas; actually, databases concerning different experimental conditions are needed to develop decision support tools.
Show more [+] Less [-]Performance of a kerb side inlet to irrigate street trees and to improve road runoff water quality: a comparison of four media types Full text
2019
Sapdhare, Harsha | Myers, Baden | Beecham, Simon | Brien, Chris
The TREENET inlet is an emerging water-sensitive urban design technology that consists of a novel kerb side inlet coupled with a leaky well infiltration system. The inlets have been retrofitted to existing roads since 2006; however, there is currently little information available on the effectiveness of these inlet and leaky well systems. This study investigated the performance of the kerb side inlets and leaky well system for water quality improvement prior to infiltration to native soil. The leaky wells included four filter media types, namely gravel, water treatment solids, sandy loam and clay. To compare the performance of the four filter media types, batch and column studies were performed in the laboratory. The best performance was observed using the sandy loam as a filter media, followed by clay, water treatment solids and then gravel. The selection of effective media for removal of heavy metals is important as each media type has different pollutant removal capacity, infiltration and clogging performance.
Show more [+] Less [-]Determination of polycyclic aromatic hydrocarbons (PAHs) and other organic pollutants in freshwaters on the western shore of Admiralty Bay (King George Island, Maritime Antarctica) Full text
2019
Szopińska, Małgorzata | Szumińska, Danuta | Bialik, Robert Józef | Dymerski, Tomasz | Rosenberg, Erwin | Polkowska, Żaneta
Organic contamination in freshwater samples has never been investigated at the western shore of Admiralty Bay. Therefore, the presence of polycyclic aromatic hydrocarbons (PAHs) in five different sites distributed along a shore running from the Arctowski Station to the Baranowski Glacier was studied. Moreover, organic compounds such as n-alkanes, toluene and ethylbenzene were also noted. Increased ΣPAHs in late Austral summer 2016 are the result of long-range atmospheric transport of air masses from South America, confirmed by 10-day backward air mass trajectories analysis. The presence of n-alkanes and other hydrocarbons, as well as the evaluation of PAH indices (e.g. ΣLMW/ΣHMW* > 1), shows the use of fuel and indicate local human activity. As a final conclusion, our analysis indicates a mixed origin of PAHs (global and local). The presence of PAHs and other hydrocarbons in the water environment may constitute a potentially negative effect on the Antarctic ecosystem and it should be investigated in detail during further research (//*ΣLMW—sum of low molecular weight PAHs (two- and three-ring PAHs); ΣHMW—sum of high molecular weight PAHs (four- and five-ring PAHs)//). Graphical abstract
Show more [+] Less [-]Comparative study of tear lipid composition in two human populations with different exposure to particulate matter in La Plata, Argentina Full text
2019
Gutierrez, María de los Angeles | Esteban Colman Lerner, Jorge | Giuliani, Daniela Silvana | Porta, Atilio Andrés | Andrinolo, Darío
To identify the changes in the lipid profile of the tear film in two human populations exposed to different levels of particulate material, and its relationship with dry eye, by gas chromatography with mass spectrometry (GC-MS) detection. A panel study involving 78 volunteers, who live and work in two locations in Argentina with different pollution levels: urban zone (n = 44) and industrial zone (n = 34). We measured the mean levels of particulate matter (PM) exposure. The tear samples were analyze by gas GC-MS detection and the dry eye was diagnose using Schirmer test, fluorescein breakup time, vital staining with fluorescein and lissamine green, and lid parallel conjunctival folds (LIPCOF). Statistical analysis was performed using Chi-Square, Bartlett’s, Mann-Whitney tests, and Multiple Correspondence Analysis. PM₁₀ level was significantly higher in industrial zone than in urban area (p < 0.05). Subjects exposed to higher levels of PM₁₀ in outdoor air presented more presence of fatty acids (FA) of long chain, a higher proportion of saturated fatty acids (SFA), and lower unsaturated fatty acids (UFA), showing a differentiated profile, which may be associated with a PM level. The incidence of dry eye was greater in the industrial zone (p < 0.001), showing in both populations for this pathology higher FA ω-6 levels, which are responsible for the inflammation process. The lipid profile in populations exposed to higher levels of PM₁₀, like the industrial zone, shows a differentiated profile of FA and more incidence of dry eye with higher FA ω-6 levels, which are responsible for the inflammation process.
Show more [+] Less [-]Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species Full text
2019
Daniel, David | Dionísio, Ricardo | de Alkimin, Gilberto Dias | Nunes, Bruno
The modern usage of pharmaceutical drugs has led to a progressive increase in their presence and environment concentrations, particularly in the aquatic compartment which is the most common final dumping location for this specific class of chemicals. These substances, due to their chemical and biological properties, can exert mostly uncharacterized toxic effects to non-target aquatic species, given the diverse pathways they activate, and the large number of putative targets in the wild. Among drugs in the environment, paracetamol assumes a leading role, considering its widespread therapeutic use and consequently, environmental presence. The present study aimed to assess the acute and chronic effects of paracetamol, in ecologically relevant levels, in the freshwater cladoceran Daphnia magna, namely focusing on biochemical and reproductive parameters. Considering the pro-oxidant effects of paracetamol, already described for a large set of aquatic organisms, specific enzymes involved in the anti-oxidant and metabolic responses were quantified, namely catalase (CAT) and glutathione S-transferases (GSTs) activities. Cholinesterases (ChEs) activity was quantified to evaluate the capacity of paracetamol to induce neurotoxicity, an indirect outcome of oxidative effects by paracetamol, that may affect feeding behavior and reproductive outcomes of this crustacean. Paracetamol in the tested levels showed no effect on reproductive traits of D. magna. Results obtained for organisms acutely exposed included significant increases in the activities of both GSTs and CAT, demonstrating a short-term pro-oxidative effect by paracetamol. On the contrary, ChEs activity was significantly decreased in organisms exposed to this drug, showing a possible interference with neurotransmission. On the contrary, no noteworthy effects were reported for organisms chronically exposed to ecologically realistic concentrations, evidencing the transient nature of the obtained biological response. These results demonstrate the responsiveness of D. magna to paracetamol, especially for high levels of exposure that, despite not being environmentally relevant, are able to trigger significant antioxidant responses. No population effects were likely to be caused by realistic levels of paracetamol, and the absence of biochemical changes after chronic exposure suggests that this specific organism may not be deleteriously affected by low levels of paracetamol, under real scenarios of contamination.
Show more [+] Less [-]Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization Full text
2019
González, Héctor | Fernández-Fuego, Daniel | Bertrand, Ana | González, Aída
Heavy-metal contamination of soils has increased in the last decades due to anthropogenic and industrial activities. Arsenic is one of the pollutants that is commonly found in industrial soils and is toxic for both plants and humans. The pH of the soil or the culture medium is one of the most important factors that interferes with the bioavailability of this metalloid to the plant. The addition of chelating agents, such as citric acid (CA), can increase the absorption of As by plants. Therefore, the objective of this work is to study the effect of the pH and the exogenous addition of citric acid on the growth, As accumulation, and thiol compounds in Eupatorium cannabinum; this plant grows naturally in contaminated soils in Asturias, Spain, and has a potential use in phytoremediation. The results showed that E. cannabinum was able to tolerate As stress even at extreme pH values and accumulated a high amounts of As in its roots, which makes it a promising species for the phytostabilization of soils polluted with this metalloid. An addition of 20 mg CA L⁻¹ led to increased biomass and As accumulation at acidic pH. In order to determine if thiolic compounds, such as phytochelatins, are involved in As accumulation and detoxification in E. cannabinum, we analyzed the synthesis of these compounds in the presence and absence of As and/or citric acid. Our results suggest that these thiolic compounds play a major role in As detoxification, since the presence of CA as a chelating agent reduced the amount of thiols necessary to cope with the toxicity caused by As.
Show more [+] Less [-]