Refine search
Results 51-60 of 1,324
Effects of Vegetation Removal and Urea Application on Iron and Nitrogen Redox Chemistry in Riparian Forested Soils Full text
2011
Shrestha, Junu | Clement, Jean-Christophe | Ehrenfeld, Joan, G | Jaffe, Peter, R | Princeton University | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Rutgers, The State University of New Jersey [New Brunswick] (RU) ; Rutgers University System (Rutgers)
Effects of Vegetation Removal and Urea Application on Iron and Nitrogen Redox Chemistry in Riparian Forested Soils Full text
2011
Shrestha, Junu | Clement, Jean-Christophe | Ehrenfeld, Joan, G | Jaffe, Peter, R | Princeton University | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Rutgers, The State University of New Jersey [New Brunswick] (RU) ; Rutgers University System (Rutgers)
International audience | Riparian wetlands are subject to nitrogen enrichment from upgradient agricultural and urban land uses and also from flooding by nitrogen-enriched surface waters. The effects of this N enrichment on wetland soil biogeochemistry may be mediated by both the presence of plants and the presence of redox-active compounds, specifically iron oxides in the soil. Despite the extensive research on wetland N cycling, the relative importance of these two factors on nitrogen is poorly known, especially for forested wetlands. This study evaluates the responses of the N and the Fe cycles to N enrichment in a riparian forested wetland, contrasting vegetated field plots with plots where the vegetation was removed to test the role of plants. Furthermore, in vitro anaerobic incubations of the experimental soils were performed to track Fe chemical changes over time under anoxic or flooded conditions. Wetland soils treated with N in form of urea, as expected, had significantly higher amounts inorganic nitrogen. In the soils where vegetation was also removed, in addition to inorganic nitrogen pool, increase in organic nitrogen pool was also observed. The results demonstrate the role of vegetation in limiting the effects excess urea has on different soil nitrogen pools. Results from anaerobic incubation of the experimental soils demonstrated the effects of N enrichment on the wetland Fe cycle. The effects of excess nitrogen and the role of vegetation on the Fe cycle in riparian wetland soil became more evident during anaerobic incubation experiments. At the end of the field experiment, Fe concentrations in the soils under the treatments were not significantly different from the control soils at the 5% confidence level. However, during the anaerobic incubation experiment of soils collected at the end of the experiment from these plots, the N-enriched soils and the unvegetated soils maintained significantly elevated concentrations of reducible Fe(III) for the initial 2-week period of incubation, and the soils collected from the plots with both the treatments had the highest Fe(III) concentrations. After 20 days of incubation, however, the Fe (III) concentrations decreased to the similar concentrations in all the incubated soils. The study clarifies the roles vegetation play in mediating the effects of N enrichment and also demonstrates that N enrichment does affect wetland redox cycle, which has strong implications on ecosystem services such as water quality improvement.
Show more [+] Less [-]Effects of Vegetation Removal and Urea Application on Iron and Nitrogen Redox Chemistry in Riparian Forested Soils Full text
2011
Shrestha, Junu | Clement, Jean-Christophe | Ehrenfeld, Joan, | Jaffe, Peter,
International audience | Riparian wetlands are subject to nitrogen enrichment from upgradient agricultural and urban land uses and also from flooding by nitrogen-enriched surface waters. The effects of this N enrichment on wetland soil biogeochemistry may be mediated by both the presence of plants and the presence of redox-active compounds, specifically iron oxides in the soil. Despite the extensive research on wetland N cycling, the relative importance of these two factors on nitrogen is poorly known, especially for forested wetlands. This study evaluates the responses of the N and the Fe cycles to N enrichment in a riparian forested wetland, contrasting vegetated field plots with plots where the vegetation was removed to test the role of plants. Furthermore, in vitro anaerobic incubations of the experimental soils were performed to track Fe chemical changes over time under anoxic or flooded conditions. Wetland soils treated with N in form of urea, as expected, had significantly higher amounts inorganic nitrogen. In the soils where vegetation was also removed, in addition to inorganic nitrogen pool, increase in organic nitrogen pool was also observed. The results demonstrate the role of vegetation in limiting the effects excess urea has on different soil nitrogen pools. Results from anaerobic incubation of the experimental soils demonstrated the effects of N enrichment on the wetland Fe cycle. The effects of excess nitrogen and the role of vegetation on the Fe cycle in riparian wetland soil became more evident during anaerobic incubation experiments. At the end of the field experiment, Fe concentrations in the soils under the treatments were not significantly different from the control soils at the 5% confidence level. However, during the anaerobic incubation experiment of soils collected at the end of the experiment from these plots, the N-enriched soils and the unvegetated soils maintained significantly elevated concentrations of reducible Fe(III) for the initial 2-week period of incubation, and the soils collected from the plots with both the treatments had the highest Fe(III) concentrations. After 20 days of incubation, however, the Fe (III) concentrations decreased to the similar concentrations in all the incubated soils. The study clarifies the roles vegetation play in mediating the effects of N enrichment and also demonstrates that N enrichment does affect wetland redox cycle, which has strong implications on ecosystem services such as water quality improvement.
Show more [+] Less [-]Effects of Vegetation Removal and Urea Application on Iron and Nitrogen Redox Chemistry in Riparian Forested Soils Full text
2011
Shrestha, Junu | Clément, Jean Christophe | Ehrenfeld, Joan G. | Jaffe, Peter R.
Riparian wetlands are subject to nitrogen enrichment from upgradient agricultural and urban land uses and also from flooding by nitrogen-enriched surface waters. The effects of this N enrichment on wetland soil biogeochemistry may be mediated by both the presence of plants and the presence of redox-active compounds, specifically iron oxides in the soil. Despite the extensive research on wetland N cycling, the relative importance of these two factors on nitrogen is poorly known, especially for forested wetlands. This study evaluates the responses of the N and the Fe cycles to N enrichment in a riparian forested wetland, contrasting vegetated field plots with plots where the vegetation was removed to test the role of plants. Furthermore, in vitro anaerobic incubations of the experimental soils were performed to track Fe chemical changes over time under anoxic or flooded conditions. Wetland soils treated with N in form of urea, as expected, had significantly higher amounts inorganic nitrogen. In the soils where vegetation was also removed, in addition to inorganic nitrogen pool, increase in organic nitrogen pool was also observed. The results demonstrate the role of vegetation in limiting the effects excess urea has on different soil nitrogen pools. Results from anaerobic incubation of the experimental soils demonstrated the effects of N enrichment on the wetland Fe cycle. The effects of excess nitrogen and the role of vegetation on the Fe cycle in riparian wetland soil became more evident during anaerobic incubation experiments. At the end of the field experiment, Fe concentrations in the soils under the treatments were not significantly different from the control soils at the 5% confidence level. However, during the anaerobic incubation experiment of soils collected at the end of the experiment from these plots, the N-enriched soils and the unvegetated soils maintained significantly elevated concentrations of reducible Fe(III) for the initial 2-week period of incubation, and the soils collected from the plots with both the treatments had the highest Fe(III) concentrations. After 20 days of incubation, however, the Fe(III) concentrations decreased to the similar concentrations in all the incubated soils. The study clarifies the roles vegetation play in mediating the effects of N enrichment and also demonstrates that N enrichment does affect wetland redox cycle, which has strong implications on ecosystem services such as water quality improvement.
Show more [+] Less [-]Principales techniques de diagnostic des polluants intérieurs : illustration au cas des odeurs Full text
2011
Romain, Anne-Claude
PESTEAUX: Implementing MetaPEARL for the Walloon Region in Belgium Full text
2011
Bah, Boubacar Billo | Vanclooster, Marnik | Oger, Robert
Herbicide and Antibiotic Removal by Woodchip Denitrification Filters: Sorption Processes Full text
2011
Ilhan, Z. Esra | Ong, Say Kee | Moorman, Thomas | MICrobiologie de l'ALImentation au Service de la Santé (MICALIS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Iowa State University (ISU)
International audience | In situ denitrification walls and biofilters made of wood chips are being implemented as innovative technologies for the removal of nitrates in tile drainage water from farms to reduce pollution of surface waters and the hypoxia problem in the Gulf of Mexico. Although fairly effective in removing nitrates, not much is known about the effectiveness of the biofilters in removal of herbicides, pesticides, and antibiotics in the drainage water. Using weathered wood chips obtained from an in situ denitrification wall, four common pollutants tested sorbed strongly to wood chips in the following order: enrofloxacin > monensin A > atrazine > sulfamethazine. Of the four chemicals tested, enrofloxacin was found to desorb the least by water extraction. The apparent hysteresis index for atrazine was found to be lower than that for enrofloxacin and sulfamethazine indicating greater sorption–desorption hysteresis for atrazine than enrofloxacin and sulfamethazine. Consecutive steps of water desorption and organic solvent extraction indicated that more than 65% of the sorbed atrazine, 70% of sulfamethazine, 90% of enrofloxacin, and 80% of monensin A were retained in wood chips. Results of this study showed that wood chip denitrification walls or biofilters have an added benefit in retaining herbicides and antibiotics and therefore can act as a barrier to reduce pollution of surface water and groundwater.
Show more [+] Less [-]Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration Full text
2011
Escarré, José | Lefèbvre, Claude | Raboyeau, Stephan | dos Santos, Anabelle | Gruber, Wolf | Cleyet-Marel, Jean-Claude | Frérot, Hélène | Noret, Nausicaa | Mahieu, Stéphanie | Collin, Christian | van Oort, Folkert | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Laboratoire d'Ecologie végétale et de Biogéochimie ; Université libre de Bruxelles (ULB) | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Génétique et évolution des populations végétales (GEPV) ; Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS) | Physicochimie et Ecotoxicologie des SolS d'Agrosystèmes Contaminés (PESSAC) ; Institut National de la Recherche Agronomique (INRA) | Agence de l'Environnement et de la Maitrise de l'Energie (04.72.C.0037)
Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration Full text
2011
Escarré, José | Lefèbvre, Claude | Raboyeau, Stephan | dos Santos, Anabelle | Gruber, Wolf | Cleyet-Marel, Jean-Claude | Frérot, Hélène | Noret, Nausicaa | Mahieu, Stéphanie | Collin, Christian | van Oort, Folkert | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Laboratoire d'Ecologie végétale et de Biogéochimie ; Université libre de Bruxelles (ULB) | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Génétique et évolution des populations végétales (GEPV) ; Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS) | Physicochimie et Ecotoxicologie des SolS d'Agrosystèmes Contaminés (PESSAC) ; Institut National de la Recherche Agronomique (INRA) | Agence de l'Environnement et de la Maitrise de l'Energie (04.72.C.0037)
International audience | Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg-1 Zn, 90,000 mg kg-1 Pb, 9,700 mg kg-1 of As and 245 mg kg-1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metaltolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg-1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.
Show more [+] Less [-]Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration Full text
2011
Escarré, Jose | Lefebvre, Claude | Raboyeau, Stephan | Dossantos, Anabelle | Gruber, Wolf | Cleyet Marel, Jean Claude | Frérot, Helene | Noret, Nausicaa | Mahieu, Stéphanie | Collin, Christian | van Oort, Folkert
Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg–1 Zn, 90,000 mg kg–1 Pb, 9,700 mg kg–1 of As and 245 mg kg–1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metal-tolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg–1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.
Show more [+] Less [-]Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes Full text
2011
Zhang, Yuan | Zhu, Yong-Guan | Houot, Sabine | Qiao, Min | Nunan, Naoise | Garnier, Patricia | State Key Laboratory for Mineral Deposits Research ; Nanjing University (NJU) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes Full text
2011
Zhang, Yuan | Zhu, Yong-Guan | Houot, Sabine | Qiao, Min | Nunan, Naoise | Garnier, Patricia | State Key Laboratory for Mineral Deposits Research ; Nanjing University (NJU) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
International audience | Composting may enhance bioremediation of PAH-contaminated soils by providing organic substrates that stimulate the growth of potential microbial degraders. However, the influence of added organic matter (OM) together with the microbial activities on the dissipation of PAHs has not yet been fully assessed. Materials and methods An in-vessel composting-bioremediation experiment of a contaminated soil amended with fresh wastes was carried out. Four different experimental conditions were tested in triplicate during 60 days using laboratory-scale reactors: treatment S (100%soil),W(100%wastes), SW(soil/ wastemixture), and SWB(soil/wastemixture with inoculation of degrading microorganisms). Results and discussion A dry mass loss of 35±5% was observed in treatments with organic wastes during composting in all the treatments except treatment S. The dissipation of the 16 USEPA-listed PAHs was largely enhanced from no significant change to 50.5±14.8% (for SW)/63.7±10.0% (for SWB).More obvious dissipation was observed when fresh wastes were added at the beginning of composting to the contaminated soil, without significant difference between the inoculated and non-inoculated treatments. Phospholipid fatty acid (PLFA) profiling showed that fungi and G-bacteria dominated at the beginning of experiment and were probably involved in PAH dissipation. Subsequently, greater relative abundances of G+bacteria were observed as PAH dissipation slowed down. Conclusions The results suggest that improving the composting process with optimal organic compositions may be a feasible remediation strategy in PAH-contaminated soils through stimulation of active microbial populations.
Show more [+] Less [-]Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes Full text
2011
Zhang, Yuan | Zhu, Yong-Guan | Houot, Sabine | Qiao, Min | Nunan, Naoise | Garnier, Patricia
INTRODUCTION: Composting may enhance bioremediation of PAH-contaminated soils by providing organic substrates that stimulate the growth of potential microbial degraders. However, the influence of added organic matter (OM) together with the microbial activities on the dissipation of PAHs has not yet been fully assessed. MATERIALS AND METHODS: An in-vessel composting-bioremediation experiment of a contaminated soil amended with fresh wastes was carried out. Four different experimental conditions were tested in triplicate during 60 days using laboratory-scale reactors: treatment S (100% soil), W (100% wastes), SW (soil/waste mixture), and SWB (soil/waste mixture with inoculation of degrading microorganisms). RESULTS AND DISCUSSION: A dry mass loss of 35 ± 5% was observed in treatments with organic wastes during composting in all the treatments except treatment S. The dissipation of the 16 USEPA-listed PAHs was largely enhanced from no significant change to 50.5 ± 14.8% (for SW)/63.7 ± 10.0% (for SWB). More obvious dissipation was observed when fresh wastes were added at the beginning of composting to the contaminated soil, without significant difference between the inoculated and non-inoculated treatments. Phospholipid fatty acid (PLFA) profiling showed that fungi and G-bacteria dominated at the beginning of experiment and were probably involved in PAH dissipation. Subsequently, greater relative abundances of G + bacteria were observed as PAH dissipation slowed down. CONCLUSIONS: The results suggest that improving the composting process with optimal organic compositions may be a feasible remediation strategy in PAH-contaminated soils through stimulation of active microbial populations.
Show more [+] Less [-]Antilles : pollution au chlordécone Full text
2011
Jannoyer M.
Mercury in United Kingdom topsoils; concentrations, pools, and Critical Limit exceedances Full text
2011
Tipping, E. | Poskitt, J.M. | Lawlor, A.J. | Wadsworth, R.A. | Norris, D.A. | Hall, J.R.
The median total mercury concentration in 898 UK rural topsoils, sampled between 1998 and 2008, was 0.095 μg g⁻¹. Approximate adjustment for unreactive metal produced an estimate of 0.052 μg g⁻¹ for reactive Hg. The highest concentrations were in the north and west, where organic-rich soils with low bulk densities dominate, but the spatial pattern was quite different if soil Hg pools (mg m⁻²) were considered, the highest values being near to the industrial north of England and London. Possible toxic effects of Hg were best evaluated by comparison with soil Critical Limits expressed as ratios of Hg to soil organic matter, or soil solution Hg²⁺ concentrations, estimated by chemical speciation modelling. Only a few percent of the rural UK soils showed exceedance, and this also applied to rural soils from the whole of Europe. UK urban and industrial soils had higher Hg concentrations and more cases of exceedance.
Show more [+] Less [-]The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK Full text
2011
Durrant, Christopher J. | Stevens, Jamie R. | Hogstrand, Christer | Bury, Nicolas R.
The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region.
Show more [+] Less [-]Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.) Full text
2011
Wang, Xiaojuan | Song, Yu | Ma, Yanhua | Zhuo, Renying | Jin, Liang
In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible.
Show more [+] Less [-]