Refine search
Results 501-510 of 4,302
Bio-accumulation of lanthanum from lanthanum modified bentonite treatments in lake restoration
2017
Waajen, G. | van Oosterhout, F. | Lürling, M.
Lanthanum (La) modified bentonite (LMB) is one of the available mitigating agents used for the reduction of the phosphorus (P) recycling in eutrophic lakes. The potential toxicity of the La from LMB to aquatic organisms is a matter of concern. In this study the accumulation of La was investigated in the macrophyte Elodea nuttallii, in chironomid larvae and in several fish species during periods up to five years following in situ LMB applications. The application of LMB increased the La concentration of exposed plants and animals. During the first growing season following LMB applications, the La content of E. nuttallii increased 78 fold (3.98–310.68 μg La. g−1 DW) to 127 fold (2.46–311.44 μg La. g−1). During the second growing season following application, the La content decreased but was still raised compared to plants that had not been exposed. The La content of chironomids was doubled in the two years following LMB application, although the increase was not significant. Raised La concentrations in fish liver, bone, muscle and skin were observed two and five years following to LMB application. Liver tissues showed the highest La increase, ranging from 6 fold (0.046–0.285 μg La. g−1 DW) to ∼20 fold (0.080–1.886 μg La. g−1, and 0.122–2.109 μg La. g−1) two years following application and from 6 fold (0.046–0.262 μg La. g−1) to 13 fold (0.013–0.167 μg La. g−1) after five years in pelagic and littoral fish. The La content of the liver from Anguilla anguilla (eel) had increased 94 fold (0.034–3.176 μg La. g−1) two years and 133 fold (0.034–4.538 μg La. g−1) five years following LMB application. No acute and chronic effects of La accumulation were observed and human health risks are considered negligible. We advocate the long-term study of effects of La accumulation following future LMB applications.
Show more [+] Less [-]Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds
2017
Oyewumi, Oluyinka | Schreiber, Madeline E.
Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60–70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment.
Show more [+] Less [-]Source apportionment of PM2.5 in North India using source-oriented air quality models
2017
Guo, Hao | Kota, Sri Harsha | Sahu, Shovan Kumar | Hu, Jianlin | Ying, Qi | Gao, Aifang | Zhang, Hongliang
In recent years, severe pollution events were observed frequently in India especially at its capital, New Delhi. However, limited studies have been conducted to understand the sources to high pollutant concentrations for designing effective control strategies. In this work, source-oriented versions of the Community Multi-scale Air Quality (CMAQ) model with Emissions Database for Global Atmospheric Research (EDGAR) were applied to quantify the contributions of eight source types (energy, industry, residential, on-road, off-road, agriculture, open burning and dust) to fine particulate matter (PM2.5) and its components including primary PM (PPM) and secondary inorganic aerosol (SIA) i.e. sulfate, nitrate and ammonium ions, in Delhi and three surrounding cities, Chandigarh, Lucknow and Jaipur in 2015. PPM mass is dominated by industry and residential activities (>60%). Energy (∼39%) and industry (∼45%) sectors contribute significantly to PPM at south of Delhi, which reach a maximum of 200 μg/m³ during winter. Unlike PPM, SIA concentrations from different sources are more heterogeneous. High SIA concentrations (∼25 μg/m³) at south Delhi and central Uttar Pradesh were mainly attributed to energy, industry and residential sectors. Agriculture is more important for SIA than PPM and contributions of on-road and open burning to SIA are also higher than to PPM. Residential sector contributes highest to total PM2.5 (∼80 μg/m³), followed by industry (∼70 μg/m³) in North India. Energy and agriculture contribute ∼25 μg/m³ and ∼16 μg/m³ to total PM2.5, while SOA contributes <5 μg/m³. In Delhi, industry and residential activities contribute to 80% of total PM2.5.
Show more [+] Less [-]Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans
2017
Lenz, Katrina A. | Pattison, Claire | Ma, Hongbo
The broad application of triclosan (TCS) and triclocarban (TCC) as antimicrobials in household and personal care products has led to the concerns regarding their human health risk and environmental impact. Although many studies have examined the toxicological effects of these compounds to a wide range of aquatic organisms from algae to fish, their potential toxicity to an important model organism the nematode Caenorhabditis elegans has never been systematically investigated. Here we assessed the toxicological effects of TCS and TCC in C. elegans using endpoints from organismal to molecular levels, including lethality, reproduction, lifespan, hatching, germline toxicity, and oxidative stress. L4 stage or young adult worms were exposed to TCS or TCC and examined using above-mentioned endpoints. Both TCS and TCC showed acute toxicity to C. elegans, with 24-h LC50s of 3.65 (95% CI: 3.15, 4.3) mg/L and 0.91 (95% CI: 0.47, 1.53) mg/L, respectively. TCS at 0.1–2 mg/L and TCC at 0.01–0.5 mg/L, respectively, induced concentration dependent reduction in the worm's reproduction, lifespan, and delay in hatching. Using a DAF-16:GFP transgenic strain, we found both compounds induced oxidative stress in the worm, indicated by the relocalization of DAF-16:GFP from cytoplasm to the nucleus upon exposure. Germline toxicity of the two compounds was also demonstrated using a xol-1:GFP transgenic strain. These findings suggest that TCS and TCC induce systemic toxic effects in C. elegans. Further studies are needed to elucidate the potential mechanisms of toxicity of these antimicrobials in the model organism, especially their potential endocrine disruption effects.
Show more [+] Less [-]Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited
2017
Scheibye, Katrine | Christensen, Jan H. | Johnsen, Anders R.
Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5–10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded at all concentrations indicating a substantial potential for biodegradation of these compound classes. Polycyclic aromatic compounds (PACs) disappeared from the oil phase, but dissolution was the main process of removal. Analysis of diagnostic ratios indicated almost no PAC biodegradation except for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged.
Show more [+] Less [-]Microplastics in sea coastal zone: Lessons learned from the Baltic amber
2017
Chubarenko, Irina | Stepanova, Natalia
Baltic amber, adored for its beauty already in Homer's Odyssey (ca. 800 B.C.E), has its material density close to that of wide-spread plastics like polyamide, polystyrene, or acrylic. Migrations of amber stones in the sea and their massive washing ashore have been monitored by Baltic citizens for ages. Based on the collected information, we present the hypothesis on the behaviour of microplastic particles in sea coastal zone. Fresh-to-strong winds generate surface waves, currents and roll-structures, whose joint effect washes ashore from the underwater slope both amber stones and plastics – and carries them back to the sea in a few days. Analysis of underlying hydrophysical processes suggests that sea coastal zone under stormy winds plays a role of a mill for plastics, and negatively buoyant pieces seem to repeatedly migrate between beaches and underwater slopes until they are broken into small enough fragments that can be transported by currents to deeper areas and deposited out of reach of stormy waves. Direct observations on microplastics migrations are urged to prove the hypothesis.
Show more [+] Less [-]Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA
2017
Leifer, Ira | Melton, Christopher | Tratt, David M. | Buckland, Kerry N. | Clarisse, Lieven | Coheur, Pierre | Frash, Jason | Gupta, Manish | Johnson, Patrick D. | Leen, J Brian | Van Damme, Martin | Whitburn, Simon | Yurganov, Leonid
Methane (CH4) and ammonia (NH3) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH3 allowing discrimination of husbandry from other CH4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH4, carbon dioxide (CO2) and NH3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20 km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1 × 10⁵ kg CH4, 2.2 × 10⁵ kg NH3, and 2.3 × 10⁷ kg CO2, suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42 Gg CH4 and 8.4 Gg NH3 implying ∼200k cows, ∼30% more than Peischl et al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH3 occurs within the confines of the Los Angeles Basin on a four to six h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas could increase those of others.
Show more [+] Less [-]Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry
2017
Zhong, Jian | Cai, Xiao-Ming | Bloss, William James
A large eddy simulation (LES) model coupled with O3-NOx-VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NOx-O3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO2 and Ox inside the street canyon are enhanced by approximately 30–40% via OH/HO2 chemistry. NO, NOx, O3, OH and HO2 are chemically consumed, while NO2 and Ox (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O3 levels, but overestimated NO2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO2. This study reveals the impacts of nonlinear O3-NOx-VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry.
Show more [+] Less [-]Temporal trends of infant and birth outcomes in Minamata after severe methylmercury exposure
2017
Yorifuji, Takashi | Kashima, Saori | Suryadhi, Made Ayu Hitapretiwi | Abudureyimu, Kawuli
Severe methylmercury poisoning occurred in Minamata and neighboring communities in Japan during the 1950s and 1960s, causing what is known as Minamata disease. Although an increase in stillbirths and a reduced male proportion at birth (i.e., reduced sex ratio) have been reported, no studies have evaluated the impact of exposure on an entire set of infant and birth outcomes. We therefore evaluated the temporal trends of these outcomes in the Minamata area from 1950 to 1974. We focused on the spontaneous/artificial stillbirth rate, crude fertility rate, male proportion at birth, male proportion among stillbirths, and infant mortality. We obtained the number of stillbirths, live births, and infant deaths in Minamata City and Kumamoto Prefecture (as a reference) from 1950 to 1974. After plotting annual figures for each outcome, we divided the study period into five intervals and compared them between Minamata City and Kumamoto Prefecture using the chi-squared test. We observed a slightly increased spontaneous stillbirth rate and decreased artificial stillbirth rate in Minamata City, followed by a reduced crude fertility rate. The crude fertility rates in Minamata City during the period 1955–1965 were significantly lower compared with those in Kumamoto Prefecture (p < 0.001). An increase in the male proportion among stillbirths was observed, corresponding to a reduction in the proportion of males at birth in the late 1950s. The impact on infant mortality was equivocal. These descriptive analyses demonstrate a severe regional impact of methylmercury exposure on a series of birth outcomes in the Minamata area.
Show more [+] Less [-]Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon
2017
Wang, Bingyu | Zhang, Wei | Li, Hui | Fu, Heyun | Qu, Xiaolei | Zhu, Dongqiang
Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC.
Show more [+] Less [-]