Refine search
Results 511-520 of 5,143
Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils
2018
Khudur, Leadin S. | Gleeson, Deirdre B. | Ryan, Megan H. | Shahsavari, Esmaeil | Haleyur, Nagalakshmi | Nugegoda, Dayanthi | Ball, A. S.
The bioremediation of historic industrial contaminated sites is a complex process. Co-contamination, often with lead which was commonly added to gasoline until 16 years ago is one of the biggest challenges affecting the clean-up of these sites. In this study, the effect of heavy metals, as co-contaminant, together with total petroleum hydrocarbons (TPH) is reported, in terms of remaining soil toxicity and the structure of the microbial communities. Contaminated soil samples from a relatively hot and dry climate in Western Australia were collected (n = 27). Analysis of soils showed the presence of both contaminants, TPHs and heavy metals. The Microtox test confirmed that their co-presence elevated the remaining ecotoxicity. Toxicity was correlated with the presence of lead, zinc and TPH (0.893, 0.599 and 0.488), respectively, assessed using Pearson Correlation coefficient factor. Next Generation Sequencing of soil bacterial 16S rRNA, revealed a lack of dominate genera; however, despite the variation in soil type, a few genera including Azospirillum spp. and Conexibacter were present in most soil samples (85% and 82% of all soils, respectively). Likewise, many genera of hydrocarbon-degrading bacteria were identified in all soil samples. Streptomyces spp. was presented in 93% of the samples with abundance between 7% and 40%. In contrast, Acinetobacter spp. was found in only one sample but was a dominant member of (45%) of the microbial community. In addition, some bacterial genera were correlated to the presence of the heavy metals, such as Geodermatophilus spp., Rhodovibrio spp. and Rubrobacter spp. which were correlated with copper, lead and zinc, respectively. This study concludes that TPH and heavy metal co-contamination significantly elevated the associated toxicity. This is an important consideration when carrying out risk assessment associated with natural attenuation. This study also improves knowledge about the dynamics of microbial communities in mixed contamination scenarios.
Show more [+] Less [-]Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods
2018
Al-Naiema, Ibrahim M. | Yoon, Subin | Wang, Yu-Qin | Zhang, Yuan-Xun | Sheesley, Rebecca J. | Stone, Elizabeth A.
Chemical mass balance (CMB) modeling and radiocarbon measurements were combined to evaluate the sources of carbonaceous fine particulate matter (PM2.5) in Shenzhen, China during and after the 2011 summer Universiade games when air pollution control measurements were implemented to achieve air quality targets. Ambient PM2.5 filter samples were collected daily at two sampling sites (Peking University Shenzhen campus and Longgang) over 24 consecutive days, covering the controlled and uncontrolled periods. During the controlled period, the average PM2.5 concentration was less than half of what it was after the controls were lifted. Organic carbon (OC), organic molecular markers (e.g., levoglucosan, hopanes, polycyclic aromatic hydrocarbons), and secondary organic carbon (SOC) tracers were all significantly lower during the controlled period. After pollution controls ended, at Peking University, OC source contributions included gasoline and diesel engines (24%), coal combustion (6%), biomass burning (12.2%), vegetative detritus (2%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 7.1%), aromatic SOC (23%), and other sources not included in the model (25%). At Longgang after the controls ended, similar source contributions were observed: gasoline and diesel engines (23%), coal combustion (7%), biomass burning (17.7%), vegetative detritus (1%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 5.3%), aromatic SOC (13%), and other sources (33%). The contributions of the following sources were smaller during the pollution controls: biogenic SOC (by a factor of 10–16), aromatic SOC (4–12), coal combustion (1.5–6.8), and biomass burning (2.3–4.9). CMB model results and radiocarbon measurements both indicated that fossil carbon dominated over modern carbon, regardless of pollution controls. However, the CMB model needs further improvement to apportion contemporary carbon (i.e. biomass burning, biogenic SOC) in this region. This work defines the major contributors to carbonaceous PM2.5 in Shenzhen and demonstrates that control measures for primary emissions could significantly reduce secondary organic aerosol (SOA) formation.
Show more [+] Less [-]A review of the pharmaceutical exposome in aquatic fauna
2018
Miller, Thomas H. | Bury, Nicolas R. | Owen, Stewart F. | MacRae, James I. | Barron, Leon P.
Pharmaceuticals have been considered ‘contaminants of emerging concern’ for more than 20 years. In that time, many laboratory studies have sought to identify hazard and assess risk in the aquatic environment, whilst field studies have searched for targeted candidates and occurrence trends using advanced analytical techniques. However, a lack of a systematic approach to the detection and quantification of pharmaceuticals has provided a fragmented literature of serendipitous approaches. Evaluation of the extent of the risk for the plethora of human and veterinary pharmaceuticals available requires the reliable measurement of trace levels of contaminants across different environmental compartments (water, sediment, biota - of which biota has been largely neglected). The focus on pharmaceutical concentrations in surface waters and other exposure media have therefore limited both the characterisation of the exposome in aquatic wildlife and the understanding of cause and effect relationships. Here, we compile the current analytical approaches and available occurrence and accumulation data in biota to review the current state of research in the field. Our analysis provides evidence in support of the ‘Matthew Effect’ and raises critical questions about the use of targeted analyte lists for biomonitoring. We provide six recommendations to stimulate and improve future research avenues.
Show more [+] Less [-]Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point
2018
Liang, Ruoyu | Chen, Juan | Shi, Yajuan | Lü, Yonglong | Sarvajayakesavalu, Suriyanarayanan | Xu, Xiangbo | Zheng, Xiaoqi | Kifāyatullāh, K̲h̲ān | Su, Chao
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.
Show more [+] Less [-]Long-term exposure to ambient particulate matter (PM2.5) is associated with platelet counts in adults
2018
Zhang, Zilong | Chan, Ta-Chien | Guo, Cui | Chang, Ly-yun | Lin, Changqing | Chuang, Yuan Chieh | Jiang, Wun Kai | Ho, Kin Fai | Tam, Tony | Woo, Kam S. | Lau, Alexis K.H. | Lao, Xiang Qian
The prothrombotic effects of particulate matter (PM) may underlie the association of air pollution with increased risks of cardiovascular disease. This study aimed to investigate the association between long-term exposure to PM with an aerodynamic diameter ≤2.5 μm (PM2.5) and platelet counts, a marker of coagulation profiles.The study participants were from a cohort consisting of 362,396 Taiwanese adults who participated in a standard medical examination program between 2001 and 2014. Platelet counts were measured through Complete Blood Count tests. A satellite-based spatio-temporal model was used to estimate 2-year average ambient PM2.5 concentration at each participant's address. Mixed-effects linear regression models were used to investigate the association between PM2.5 exposure and platelet counts.This analysis included 175,959 men with 396,248 observations and 186,437 women with 397,877 observations. Every 10-μg/m3 increment in the 2-year average PM2.5 was associated with increases of 0.42% (95% CI: 0.38%, 0.47%) and 0.49% (95% CI: 0.44%, 0.54%) in platelet counts in men and women, respectively. A series of sensitivity analyses, including an analysis in participants free of cardiometabolic disorders, confirmed the robustness of the observed associations. Baseline data analyses showed that every 10-μg/m3 increment in PM2.5 was associated with higher risk of 17% and 14% of having elevated platelet counts (≥90th percentile) in men and women, respectively.Long-term exposure to PM2.5 appears to be associated with increased platelet counts, indicating potential adverse effects on blood coagulability.
Show more [+] Less [-]Multi-element isotopic signature (C, N, Pb, Hg) in epiphytic lichens to discriminate atmospheric contamination as a function of land-use characteristics (Pyrénées-Atlantiques, SW France)
2018
Barre, Julien P.G. | Deletraz, Gaëlle | Sola-Larrañaga, Cristina | Santamaría, Jesús Miguel | Bérail, Sylvain | Donard, Olivier F.X. | Amouroux, David
Multi-elemental isotopic approach associated with a land-use characteristic sampling strategy may be relevant for conducting biomonitoring studies to determine the spatial extent of atmospheric contamination sources. In this work, we investigated how the combined isotopic signatures in epiphytic lichens of two major metallic pollutants, lead (²⁰⁶Pb/²⁰⁷Pb) and mercury (δ²⁰²Hg, Δ¹⁹⁹Hg), together with the isotopic composition of nitrogen and carbon (δ¹⁵N, δ¹³C), can be used to better constrain atmospheric contamination inputs. To this end, an intensive and integrated sampling strategy based on land-use characteristics (Geographic information system, GIS) over a meso-scale area (Pyrénées-Atlantiques, SW France) was applied to more than 90 sampling stations. To depict potential relationships between such multi-elemental isotopic fingerprint and land-use characteristics, multivariate analysis was carried out. Combined Pb and Hg isotopic signatures resolved spatially the contribution of background atmospheric inputs from long range transport, from local legacy contamination (i.e. Pb) or actual industrial inputs (i.e. Pb and Hg from steel industry). Application of clustering multivariate analysis to all studied isotopes provided a new assessment of the region in accordance with the land-use characteristics and anthropogenic pressures.
Show more [+] Less [-]Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid
2018
Li, Yong | Chen, Haiyan | Wang, Fei | Zhao, Furong | Han, Xiaomin | Geng, Huanhuan | Gao, Ling | Chen, Huilun | Yuan, Rongfang | Yao, Jun
This work investigated the role of natural organic matter (NOM) in the environmental processes of silver nanoparticles (AgNP) and the uptake and accumulation of AgNP in wheat. Different NOMs (Suwannee River humic acids [SRHA], fulvic acid [FA]) and Ag elements (Ag⁽⁰⁾ and Ag⁺) were incubated in a hydroponic media for 15 days. The results showed that the NOM (10 mg C L⁻¹) altered the dissolution, stabilization, uptake and accumulation of AgNP. The dissolution of AgNP declined in the presence of NOM. Compared with FA, the dissolved Ag⁺ decreased much more from 0.30 mg L⁻¹ to 0.10 mg L⁻¹ in the presence of SRHA. The fluorescence quenching results indicated that SRHA exhibited stronger binding to Ag⁺ than that of FA, and the quenching constants Ksv were 0.1309 (SRHA) and 0.0074 (FA), respectively. CO, CH, COC, and MeOH were involved in the interaction between NOM and AgNP. The NOM decreased the accumulated content of Ag in wheat. Hence, NOM alleviated the inhibition of AgNP to wheat growth. SRHA reduced the Ag content of wheat roots approximately 3-fold. These results clearly indicated the importance of NOM on altering the behavior, fate and toxicity of AgNP in an environment.
Show more [+] Less [-]Heavy metals in slag affect inorganic N dynamics and soil bacterial community structure and function
2018
Oka, Miyuki | Uchida, François Yoshitaka
Heavy metal contamination of soil in the vicinity of mining sites is a serious environmental problem around the world when mining residue (slag) is dispersed as dust. We conducted an incubation experiment to investigate the effect of a slag containing high levels of Pb and Zn (62.2 and 33.6 g kg⁻¹ slag as PbO and ZnO, respectively, sampled from a site formerly used as a lead and zinc mine) on the nitrogen cycle when mixed with soil (0–0.048 g slag g⁻¹ soil). The nitrogen cycle provides many life supporting-functions. To assess the quality of the soil in terms of the nitrogen cycle we focused on the dynamics of nitrate and ammonium, and bacterial community structure and functions within the soil. After two weeks of pre-incubation, ¹⁵N-labeled urea (500 mg N kg⁻¹) was added to the soil. Changes in soil pH, the concentration and ¹⁵N ratio of nitrate (NO₃⁻-N) and ammonium, and bacterial relative abundance and community structure were measured. Results indicated that increasing the ratio of slag to soil had a stronger negative effect on nitrification than ammonification, as suggested by slower nitrate accumulation rates as the slag:soil ratio increased. In the treatment with the highest amount of slag, the concentration of NO₃⁻-N was 50% of that in the controls at the end of the incubation. Regarding the bacterial community, Firmicutes had a positive and Planctomycetes a negative correlation with increasing slag concentration. Bacterial community functional analysis showed the proportion of bacterial DNA sequences related to nitrogen metabolism was depressed with increasing slag, from 0.68 to 0.65. We concluded that the slag impacted the soil bacterial community structure, and consequently influenced nitrogen dynamics. This study could form the basis of further investigation into the resistance of the nitrogen cycle to contamination in relation to soil bacterial community.
Show more [+] Less [-]Theoretical study on gas-phase reactions of nitrate radicals with methoxyphenols: Mechanism, kinetic and toxicity assessment
2018
Wei, Bo | Sun, Jianfei | Mei, Qiong | An, Zexiu | Wang, Xueyu | He, Maoxia
Creosol and 4-ethylguaiacol are two important methoxyphenols, lignin pyrolysis products, which are discharge into the atmosphere in large quantities. In this work, theoretical calculations of the reaction mechanism towards the two compounds with NO₃ radicals was performed using DFT method. The rate constants and toxicity assessment were also investigated. The atmospheric lifetime for creosol and 4-ethylguaiacol were 0.82 and 0.19 h, respectively. A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl, which has not yet been clarified in previous studies. The toxicity of methoxyphenols and their degradation products is closely related to their hydrophobicity. Although most degradation products are less toxic, they also should be pay more attention, especially for nitro-substituents.A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl. The toxicity is closely related to their hydrophobicity.
Show more [+] Less [-]Foliar mercury content from tropical trees and its correlation with physiological parameters in situ
2018
Teixeira, Daniel C. | Lacerda, Luiz D. | Silva-Filho, Emmanoel V.
The terrestrial biogeochemical cycle of mercury has been widely studied because, among other causes, it presents a global distribution and harmful biotic interactions. Forested ecosystems shows great concentrations from Hg and Litterfall is known as the major contributor to the fluxes at the soil/air interface, through the superficial adsorption on the leaves and by the gas exchange of the stomatal pores. The understanding of which processes control the stage of Hg cycle in these ecosystems is still not totally clear. The influences of physiological and morphological parameters were tested against the Hg concentrations in the leaves of 14 endemic species of an evergreen tropical forest in south-eastern Brazil, and an exotic species from Platanus genus. Pathways were studied through leaf areas and growing tree parameters, where maximum rate of net photosynthesis (Pnmax), transpiration rate (E), stomatal conductance (Gs) were examined. The results obtained in situ indicated a positive correlation between Pnmax and the Hg concentration; Cedrela fissilis and Croton floribundus were the most sensitive species to the accumulation of Hg and the most photosynthetically active in this study. The primary productivity from Tropical forest should be a proxy of Hg deposition from atmosphere to soil, retained there while forests stand up, representing an environmental service of sequestration of this global pollutant. Therefore, forests and trees with great photosynthetic potential should be considered in predictions, budgets and non-geological soil content regarding the global Hg cycle.
Show more [+] Less [-]