Refine search
Results 521-530 of 4,896
Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity
2019
Zhang, Yan | Feng, Jianfeng | Gao, Yongfei | Liu, Xinyong | Zhu, Liang | Zhu, Lin
Accurately predicting the accumulation and toxicity of metals in organisms is a challenging work in ecotoxicology. Here, we developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult zebrafish exposed to Cd and Pb. The model included the gill, liver, intestine, gonad, carcass, and brain, which were linked by blood circulation in the PBTK process and by dynamic relationships between the target organ concentrations and mortality in the TD process. Results showed that the PBTK sub-model can accurately describe and predict the uptake, distribution and disposition kinetics of Cd and Pb in zebrafish. The exchange rates and the accumulation of the metals in the organs were significantly different. For Cd, the highest exchange rate was between blood and liver, and the greatest accumulation of Cd occurred in the liver. For Pb, the greatest accumulation occurred in the gill. The TD sub-model further indicated that metal concentrations in the gill may effectively act as more suitable indicator of Cd and Pb toxic effect than whole body or other organs. The proposed PBTK-TD model is helpful to understanding the fundamental processes by which zebrafish regulate the uptake and disposition of metal and to quantitatively predicting metal toxicity.
Show more [+] Less [-]Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach
2019
Douglas, Ashley N.J. | Irga, Peter J. | Torpy, Fraser R.
Global urbanisation has resulted in population densification, which is associated with increased air pollution, mainly from anthropogenic sources. One of the systems proposed to mitigate urban air pollution is urban forestry. This study quantified the spatial associations between concentrations of CO, NO₂, SO₂, and PM₁₀ and urban forestry, whilst correcting for anthropogenic sources and sinks, thus explicitly testing the hypothesis that urban forestry is spatially associated with reduced air pollution on a city scale. A Land Use Regression (LUR) model was constructed by combining air pollutant concentrations with environmental variables, such as land cover type and use, to develop predictive models for air pollutant concentrations. Traffic density and industrial air pollutant emissions were added to the model as covariables to permit testing of the main effects after correcting for these air pollutant sources. It was found that the concentrations of all air pollutants were negatively correlated with tree canopy cover and positively correlated with dwelling density, population density and traffic count. The LUR models enabled the establishment of a statistically significant spatial relationship between urban forestry and air pollution mitigation. These findings further demonstrate the spatial relationships between urban forestry and reduced air pollution on a city-wide scale, and could be of value in developing planning policies focused on urban greening.
Show more [+] Less [-]Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies
2019
Li, Xiaodi | Xie, Qiang | Chen, Shouhui | Xing, Mingchao | Guan, Tong | Wu, Deyi
Release of phosphorus (P) from sediment to overlying water has to be dealt with to address algal blooms in eutrophic lakes. In this study, the sediment from the Lake Taihu was amended with lanthanum modified zeolite (LMZ) to reduce P release under different pH, temperature and anaerobic conditions. LMZ performed well, to decreasing P concentration in Lake Taihu water in the presence of sediment. The EPC₀ value, the critical P concentration at which there was neither P adsorption nor P release, was lowered by adding LMZ, suggesting that amendment with LMZ could diminish the risk of P release from the sediment. From the Langmuir isotherm model, the adsorption capacity of phosphate by LMZ was estimated to be 64.1 mgP/g. The LMZ-amended sediment had a higher content of stable P forms (HCl-P and Res-P) and a lower content of P forms with a high (NH₄Cl-P and BD-P) or medium-high (NaOH-P and Org-P) risk of release, when compared with the original sediment. The fractionation simulates conditions which release potentially mobile P which can then be simply re-bound to LMZ. At high pH (>9.0), anaerobic condition or high temperature promoted the liberation of P from sediment. However, P release could be greatly inhibited by LMZ. In addition, although Mn²⁺ and NH₄⁺ ions were released from sediment under the anaerobic condition, the release could also be hindered by adding LMZ. LMZ is a promising P inactivation agent to manage eutrophication in the sediment of Lake Taihu.
Show more [+] Less [-]A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations
2019
He, Yide | Li, Xiuwen | Jia, Dantong | Zhang, Wenming | Zhang, Tao | Yu, Yang | Xu, Yanhua | Zhang, Yongjun
Gabapentin (GPT) has become an emerging contaminant in aquatic environments due to its wide application in medical treatment all over the world. In this study, embryos of zebrafish were exposed to gabapentin at realistically environmental concentrations, 0.1 μg/L and 10 μg/L, so as to evaluate the ecotoxicity of this emergent contaminant. The transcriptomics profiling of deep sequencing was employed to illustrate the mechanisms. The zebrafish (Danio rerio) embryo were exposed to GPT from 12 hpf to 96 hpf resulting in 136 and 750 genes differentially expressed, respectively. The results of gene ontology (GO) analysis and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis illustrated that a large amount of differentially expressed genes (DEGs) were involved in the antioxidant system, the immune system and the nervous system. RT-qPCR was applied to validate the results of RNA-seq, which provided direct evidence that the selected genes involved in those systems mentioned above were all down-regulated. Acetylcholinesterase (AChE), lysozyme (LZM) and the content of C-reactive protein (CRP) were decreased at the end of exposure, which is consistent with the transcriptomics results. The overall results of this study demonstrate that GPT simultaneously affects various vital functionalities of zebrafish at early developmental stage, even at environmentally relevant concentrations.
Show more [+] Less [-]Effects of shrimp-aquaculture reclamation on sediment nitrate dissimilatory reduction processes in a coastal wetland of southeastern China
2019
Gao, Dengzhou | Liu, Min | Hou, Lijun | Derrick, Y.F Lai | Wang, Weiqi | Li, Xiaofei | Zeng, Aying | Zheng, Yanling | Han, Ping | Yang, Yi | Yin, Guoyu
The conversion of natural saltmarshes to shrimp aquaculture ponds can potentially influence the biogeochemical cycling of nutrients in coastal wetlands, but its impact on the dynamics of sediment dissimilatory nitrate (NO3−) reduction remains poorly understood. In this study, three sediment NO3− reduction processes including denitrification (DNF), anaerobic ammonium oxidation (ANAMMOX), and dissimilatory NO3− reduction to ammonium (DNRA) were examined simultaneously in a natural saltmarsh and two shrimp culture ponds (5- and 18-year-old) in July and November, using nitrogen (N) isotope-tracing experiments. Our results showed that sediment potential DNF, ANAMMOX and DNRA rates were generally higher in the shrimp culture ponds than the natural saltmarsh in the two seasons. The rates of all three processes generally increased with the age of shrimp ponds, with the magnitude of increase being less pronounced for DNF and ANAMMOX than DNRA. The contribution of DNRA to total NO3− reduction increased significantly following saltmarsh conversion to shrimp ponds, suggesting that DNRA became an increasingly important biogeochemical process under shrimp culture. DNRA competed with DNF and limited reactive N loss to some extent after natural saltmarshes converted to shrimp culture ponds. The results of redundancy analysis revealed that the availability of substrates and sulfides in sediments, rather than the bacteria gene abundance, were the most important factor influencing the NO3− reduction processes. Overall, our findings highlighted that shrimp-aquaculture reclamation may aggravate nitrogen loading in coastal wetlands by promoting the production of bioavailable ammonium.
Show more [+] Less [-]Haze formation indicator based on observation of critical carbonaceous species in the atmosphere
2019
Yang, Shuo | Duan, Fengkui | Ma, Yongliang | He, Kebin | Zhu, Lidan | Ma, Tao | Ye, Siqi | Li, Hui | Huang, Tao | Kimoto, Takashi
Organic aerosol (OA) are always the most abundant species in terms of relative proportion to PM₂.₅ concentration in Beijing, while in previous studies, poor link between carbonaceous particles and their gaseous precursors were established based on field observation results. Through this study, we provided a comprehensive analysis of critical carbonaceous species in the atmosphere. The concentrations, diurnal variations, conversions, and gas-particle partitioning (F-factor) of 8 carbonaceous species, carbon dioxide (CO₂), carbon monoxide (CO), methane (CH₄), volatile organic compounds (VOCs), non-methane hydrocarbon (NMHC), organic carbon (OC), elemental carbon (EC), and water soluble organic compounds (WSOCs), in Beijing were analyzed synthetically. Carbonaceous gases (CO, CO₂, VOCs, and CH₄) and OC/EC ratios exhibited double-peak diurnal patterns with a pronounced midnight peak, especially in winter. High correlation between VOCs and OC during winter nighttime indicated that OC was formed from VOCs precursors via an unknown mechanism at relative humidity greater than 50% and 80%, thereby promoting WSOC formation in PM₁ and PM₂.₅ respectively. The established F-factor method was effective to describe gas-to-particle transformation of carbonaceous species and was a good indicator for haze events since high F-factors corresponded with enhanced PM₂.₅ level. Moreover, higher F-factors in winter indicated carbonaceous species were more likely to exist as particles in Beijing. These results can help gain a comprehensive understanding of carbon cycle and formation of secondary organic aerosols from gaseous precursors in the atmosphere.
Show more [+] Less [-]Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan
2019
Ali, Waqar | Aslam, Muhammad Wajahat | Junaid, Muhammad | Ali, Kamran | Guo, Yongkun | Rasool, Atta | Zhang, Hua
The present study aims to investigate the spatial distribution and associated various geochemical mechanisms responsible for fluoride (F⁻) contamination in groundwater of unconfined aquifer system along major rivers in Sindh and Punjab, Pakistan. The concentration of F⁻ in groundwater samples ranged from 0.1 to 3.9 mg/L (mean = 1.0 mg/L) in Sindh and 0.1–10.3 mg/L (mean = 1.0 mg/L) in Punjab, respectively with 28.9% and 26.6% of samples exhibited F⁻ contamination beyond WHO permissible limit value (1.5 mg/L). The geochemical processes regulated F⁻ concentration in unconfined aquifer mainly in Sindh and Punjab were categorized as follows: 1) minerals weathering that observed as the key process to control groundwater chemistry in the study areas, 2) the strong correlation between F⁻ and alkaline pH, which provided favorable environmental conditions to promote F⁻ leaching through desperation or by ion exchange process, 3) the 72.6% of samples from Sindh and Punjab were dominated by Na⁺- Cl⁻ type of water, confirmed that the halite dissolution process was the major contributor for F⁻ enrichment in groundwater, 4) dolomite dissolution was main process frequently observed in Sindh, compared with Punjab, 5) the arid climatic conditions promote evaporation process or dissolution of evaporites or both were contributing to the formation of saline groundwater in the study area, 6) the positive correlation observed between elevated F⁻ and fluorite also suggested that the fluorite dissolution also played significant role for leaching of F⁻ in groundwater from sediments, and 7) calcite controlled Ca2⁺ level and enhanced the dissolution of F-bearing minerals and drive F⁻ concentration in groundwater. In a nut shell, this study revealed the worst scenarios of F⁻ contamination via various possible geochemical mechanisms in groundwater along major rivers in Sindh and Punjab, Pakistan, which need immediate attention of regulatory authorities to avoid future hazardous implications.
Show more [+] Less [-]Spatial and temporal variation of inorganic ions in rainwater in Sichuan province from 2011 to 2016
2019
Li, Junlin | Li, Rui | Cui, Lulu | Meng, Ya | Fu, Hongbo
China continues to suffer from severe acid deposition, despite the government implying a series of policies to control air pollution. In this study, rainwater samples were collected from 2011 to 2016 in Sichuan province to measure the pH values and the concentrations of nine inorganic ions (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, Na⁺, Ca²⁺, K⁺, Mg²⁺, and F⁻), and then to investigate their spatiotemporal variations. Besides, the dominant sources for the acidic ions in the precipitation were also revealed by statistical model. The results showed that the rainwater continued to be highly acidic, and the Volume-Weighted Mean (VWM) pH value was calculated to be 5.18 during 2011 and 2016. NH₄⁺, Ca²⁺, NO₃⁻, and SO₄²⁻ were the dominant water-soluble inorganic ions, accounting for 79.2% of the total ions on average. The remarkable decrease in NO₃⁻ and SO₄²⁻ concentrations (from 75.9 to 54.3 μeq L⁻¹ and from 285 to 145 μeq L⁻¹, respectively) resulted in an increase in the pH value of rainwater from 5.24 in 2011 to 5.70 in 2016. The concentrations of SO₄²⁻, NO₃⁻, F⁻, Na⁺, and K⁺ showed remarkably seasonal variation, with the highest value observed in winter, followed by spring and autumn, and the lowest value observed in summer. High VWM concentration of these ions in winter were mainly due to adverse meteorological conditions (e.g., rare rainfall, lower planetary boundary height, and stagnant air) and intensive anthropogenic emissions. SO₄²⁻, NO₃⁻, and F⁻ ions peaked in the southeastern Sichuan province, which is a typical industrial region. NH₄⁺ concentrations decreased from 268 μeq L⁻¹ in the east to 10.4 μeq L⁻¹ in the western Sichuan province, which could be related to the development of agriculture in the eastern Sichuan province. Ca²⁺ peaked in southeastern Sichuan province due to intensive construction activities and severe stone desertification. On the basis of Positive Matrix Factorization (PMF) analysis, four sources of inorganic ions in rainwater were identified, including anthropogenic source, crust, biomass burning, and aging sea salt aerosol. Geographically Weighted Regression (GWR) was used to find the spatial correlations between the socio-economic factors and ions in the rainwater. At the regional scale, the influence of fertilizer consumption and Gross Agricultural Production (GAP) on NH₄⁺ increased from east to west; moreover the influence of Gross Industrial Production (GIP) on SO₄²⁻ and NO₃⁻ also increased.
Show more [+] Less [-]Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging
2019
Nam, Sun-Hwa | Lee, Jieun | An, Youn-Joo
In the present study, we evaluate our previously developed non-destructive soil algal toxicity method using species from a different class of algae; Class Trebouxiophyceae (Chlorella vulgaris and Chlorella sorokiniana), and directly measure the photosynthetic activity of these species adsorbed onto the soil as a new toxicity endpoint. This study shows that non-destructive soil algal toxicity method is applicable to non-specific test species, including those of Class Trebouxiophyceae as well as Class Chlorophyceae (Chlorococcum infusionum and Chlamydomonas reinhardtii). Furthermore, by performing photosynthesis image analysis, we verify that it is possible to measure the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soils without the need to extract algal cells from the soil. We propose that the non-destructive soil algal toxicity method represents a novel technique for 1) evaluating pollutants in soil using non-specific algae and 2) conveniently and rapidly assessing the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soil as a new toxicity endpoint.
Show more [+] Less [-]Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates
2019
Hano, Takeshi | Ito, Katsutoshi | Ohkubo, Nobuyuki | Sakaji, Hideo | Watanabe, Akio | Takashima, Kei | Satō, Taku | Sugaya, Takuma | Matsuki, Kosuke | Onduka, Toshimitsu | Ito, Mana | Somiya, Rei | Mochida, Kazuhiko
This study aimed to evaluate and qualify field-based potential risks of seven neonicotinoid and phenylpyrazole (fipronil) insecticides on aquatic invertebrates, including estuary-resident marine crustaceans. One hundred and ninety-three estuarine water samples, with salinity ranging from 0.5 to 32.7, were collected from four estuarine sites in the Seto Inland Sea of Japan, in 2015–2018 and the insecticide levels were measured. Five neonicotinoid and fipronil insecticides were successfully identified, and their occurrence varied temporally. Marine crustaceans were simultaneously harvested every month from one of the estuarine water sampling sites in 2015–2017. Three predominant crustacean species, kuruma prawn (Penaeus japonicus), sand shrimp (Crangon uritai), and mysid (Neomysis awatschensis), were captured and their seasonal presence was species independent. A 96-h laboratory toxicity study with the insecticides using kuruma prawn, sand shrimp, and a surrogate mysid species (Americamysis bahia) indicated that fipronil exerted the highest toxicity to the three crustaceans. Using both toxicity data and insecticide occurrence in estuarine water (salinity ≥10, n = 169), the potential risks on the three marine crustaceans were quantified by calculating the proportion of mixture toxicity effects (Pₘᵢₓ). The Pₘᵢₓ of seven neonicotinoids on the crustaceans was less than 0.8%, which is likely to be too low to indicate adverse effects caused by the insecticides. However, short temporal detection of fipronil (exclusively in June and July) significantly affected the Pₘᵢₓ, which presented the maximal Pₘᵢₓ values of 21%, 3.4%, and 72% for kuruma prawn, sand shrimp, and mysid, respectively, indicating a significant effect on the organisms. As for estuarine water (salinity <10), some water samples contained imidacloprid and fipronil exceeding the freshwater benchmarks for aquatic invertebrates. The present study provides novel insights into the seasonally varying risks of insecticides to estuarine crustaceans and highlights the importance of considering whether ecological risk periods coincide with crustacean presence.
Show more [+] Less [-]