Refine search
Results 531-540 of 6,643
Chronic nitrogen addition promotes dissolved organic carbon accumulation in a temperate freshwater wetland Full text
2020
Mao, Rong | Zhang, Xin-Hou | Song, Chang-Chun
Temperate wetlands have been undergoing increased nitrogen (N) inputs in the past decades, yet its influence on dissolved organic carbon (DOC) dynamics is still elusive in these ecosystems. Here, using a field multi-level N addition (0, 6, 12, and 24 g N m⁻² year⁻¹) experiment, we investigated the changes in aboveground plant biomass, DOC production from plant litters, DOC biodegradation, and DOC concentration in surface water and soil pore water (0–15 cm depth) following 10 years of N addition in a freshwater marsh of Northeast China. We observed that, irrespective of N addition levels, N addition caused an increase in DOC production from plant litters under both non-flooded and flooded conditions. Conversely, DOC biodegradation was inhibited by N addition in both surface water and soil pore water. Because of enhanced DOC production from plant litters and declined DOC biodegradation, N addition elevated DOC concentration in surface water and soil pore water across the growing season. In addition, long-term N addition increased aboveground plant biomass, but decreased species richness. Our results suggest that long-term N enrichment promotes DOC accumulation through the contrasting effects on litter-derived DOC production and microbial decomposition of DOC in temperate wetlands.
Show more [+] Less [-]Assessment of kitchen emissions using a backpropagation neural network model based on urinary hydroxy polycyclic aromatic hydrocarbons Full text
2020
Gan, Dong | Huang, Daizheng | Yang, Jie | Zhang, Li’e | Ou, Songfeng | Feng, Yumeng | Peng, Yang | Peng, Xiaowu | Zhang, Zhiyong | Zou, Yunfeng
Kitchen emissions are mixed indoor air pollutants with adverse health effects, but the large-scale assessment is limited by costly equipment and survey methods. This study aimed to discuss the application of backpropagation (BP) neural network models in the assessment of kitchen emissions based on the exposure marker. A total of 3686 participants were recruited for the kitchen survey, and their sleep quality was measured by the Pittsburgh sleep quality index (PSQI). After excluding the confounders, 365 participants were selected to assess their urinary hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) concentrations by ultra-high-performance liquid chromatography/tandem mass spectrometry. Two BP neural network models were then set up using the survey and detection data from the 365 participants and used to predict the total urinary OH-PAHs concentrations of all participants. The total urinary OH-PAHs and 1-hydroxy-naphthalene (1-OHNap) concentrations were significantly higher among the 365 participants with poor sleep quality (global PSQI score > 5; P < 0.05). Results from internal and external validation showed that our model has high credibility (model 2). Further, the participants with higher predicted total urinary OH-PAHs concentrations were associated with the global PSQI score of >5 (odds ratio (OR) = 1.284, 95% confidence interval (CI) = 1.082–1.525 for participants with predicted total urinary OH-PAHs concentrations of over 1.897 μg/mmol creatinine in model 1, and OR = 1.467, 95% CI = 1.240–1.735 for participants with predicted total urinary OH-PAHs concentrations of over 2.253 μg/mmol creatinine in model 2) after adjusting for the confounders. Findings suggest that the BP neural network model is suitable for assessing kitchen emissions, and the urinary OH-PAHs concentrations can be taken as the model outlay.
Show more [+] Less [-]Assessment of vanadium and nickel enrichment in Lower Athabasca River floodplain lake sediment within the Athabasca Oil Sands Region (Canada) Full text
2020
Klemt, Wynona H. | Kay, Mitchell L. | Wiklund, Johan A. | Wolfe, Brent B. | Hall, Roland I.
Sediment quality monitoring is commonly used to assess for river pollution by industrial activities, but requires knowledge of pre-disturbance conditions. This has long been a critical knowledge gap for assessing pollution of the Lower Athabasca River within the Athabasca Oil Sands Region (AOSR) because sediment quality monitoring started 30 years after mining operations began in 1967. Here, we analyze oil-sands pollution indicator metals vanadium (V) and nickel (Ni) in sediment cores from five Athabasca River floodplain lakes spanning from 17 km upstream to 58 km downstream of central oil sands operations. These data are used to define pre-development baseline (i.e., reference) concentrations and assess for enrichment in sediment deposited after 1967. Measurements of organic and inorganic matter content were used to differentiate periods of strong and weaker Athabasca River influence in the sediment records, as needed to discern pathways of metal deposition. Numerical analyses reveal that post-1967 V and Ni enrichment factors have remained below the 1.5 threshold for ‘minimal enrichment’ (sensu Birch, 2017) in stratigraphic intervals of strong river influence in the floodplain lakes. Thus, concentrations of V and Ni carried by Athabasca River sediment have not become measurably enriched since onset of oil sands development, as demonstrated by our before-after study design with >99.99% power to detect a 10% increase above pre-development baselines. At the closest lake (<1 km) to oil sands operations, however, enrichment factors for V and Ni increased to 2.1 and 1.5, respectively, in the mid-1980s and have remained at this level when river influence was weaker, indicating contamination via atmospheric transport. Localized enrichment within the oil sands region via atmospheric pathways is a greater concern for ecosystems and society than local and far-field transport by fluvial pathways.
Show more [+] Less [-]Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle vulgaris L.) Full text
2020
Li, Jingru | Li, Yao | Tang, Shiyi | Zhang, Yufan | Zhang, Juxiang | Li, Yuqiao | Xiong, Liqin
The use of polymers such as plastic has become an important part of daily life, and in aqueous environments, these polymers are considered as pollutants. When macropolymers are reduced to the nanoscale, their small particle size and large specific surface area facilitate their uptake by plants, which has a significant impact on aquatic plants. Therefore, it is essential to study the pollution of nanoscale polymers in the aquatic environment. In this work, we prepared nanoscale polymer dots (Pdots) and explored their toxicity, uptake and transport mechanisms in penny grass. From toxicological studies, in the absence of other nutrients, the cell structure, physiological parameters (total soluble protein and chlorophyll) and biochemical parameters (malondialdehyde) do not show significant changes over at least five days. Through in vivo fluorescence and photoacoustic (PA) imaging, the transport location can be visually detected accurately, and the transport rate can be analyzed without destroying the plants. Moreover, through ex vivo fluorescence imaging, we found that different types of Pdots have various uptake and transport mechanisms in stems and blades. It may be due to the differences in ligands, particle sizes, and oil-water partition coefficients of Pdots. By understanding how Pdots interact with plants, a corresponding method can be developed to prevent them from entering plants, thus avoiding the toxicity from accumulation. Therefore, the results of this study also provide the basis for subsequent prevention work.
Show more [+] Less [-]Per- and polyfluoroalkyl substances (PFASs) in blood of captive Siberian tigers in China: Occurrence and associations with biochemical parameters Full text
2020
Wang, Yajun | Yao, Jingzhi | Dai, Jiayin | Ma, Liying | Liu, Dan | Xu, Haitao | Cui, Qianqian | Ma, Jianzhang | Zhang, Hongxia
Per- and polyfluoroalkyl substances (PFASs) have been ubiquitously detected in the environment and marine animals. However, little is known about these substances and their associations with health parameters in wild terrestrial mammals. In this study, we determined PFAS levels and distribution in the blood of captive Siberian tigers in Harbin, China, and evaluated potential exposure pathways by daily intake. In addition, for the first time, we explored the associations between serum PFAS concentrations and clinical parameters. Results showed that perfluorooctanoate (PFOA) was the dominant PFAS compound in blood (accounting for 64%), followed by perfluorooctanesulfonate (PFOS). In addition, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) concentrations were also detected in blood and dietary food. Furthermore, significant positive age relationships were observed for levels of perfluoroheptanoate (PFHpA), PFOA, PFOS, and 6:2 Cl-PFESA in the blood of female tigers. Results showed that PFOA and PFOS in dietary food accounted for over 70% of total daily intake of PFASs, indicating that meat consumption is a predominant exposure pathway in tigers. We also found positive associations between higher exposure to PFASs (including PFOA, PFOS, and 6:2 Cl-PFESA) and elevated serum levels of alanine transaminase (ALT), a marker of liver damage. Thus, comprehensive health assessments of PFAS burdens in wildlife are needed.
Show more [+] Less [-]Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks Full text
2020
Pani, Shantanu Kumar | Wang, Shengxiang | Lin, Neng-Huei | Chantara, Somporn | Lee, Chung-Te | Thepnuan, Duangduean
Black carbon (BC) has been demonstrated to pose significant negative impacts on climate and human health. Equivalent BC (EBC) measurements were conducted using a 7-wavelength aethalometer, from March to May 2016, over an urban atmosphere, viz., Chiang Mai (98.957°E, 18.795°N, 373 m above sea level), Thailand in northern peninsular Southeast Asia. Daily variations in aerosol light absorption were mainly governed by open fire activities in the region. The mean mass-specific absorption cross-section (MAC) value of EBC at 880 nm was estimated to be 9.3 m² g⁻¹. The median EBC mass concentration was the highest in March (3.3 μg m⁻³) due to biomass-burning (comprised of forest fire and agricultural burning) emissions accompanied by urban air pollution within the planetary boundary layer under favorable meteorological conditions. Daily mean absorption Ångström exponent (AAE₄₇₀/₉₅₀) varied between 1.3 and 1.7 and could be due to variations in EBC emission sources and atmospheric mixing processes. EBC source apportionment results revealed that biomass-burning contributed significantly more to total EBC concentrations (34–92%) as compared to fossil-fuel (traffic emissions). Health risk estimates of EBC in relation to different health outcomes were assessed in terms of passive cigarette equivalence, highlighting the considerable health effects associated with exposure to EBC levels. As a necessary action, the reduction of EBC emissions would promote considerable climate and health co-benefits.
Show more [+] Less [-]Linking cadmium and mercury accumulation to nutritional intake in common dolphins (Delphinus delphis) from Patagonia, Argentina Full text
2020
Machovsky Capuska, Gabriel E. | Machovsky-Capuska, Gabriel E. | von Haeften, Gabriela | Romero, M Alejandra | Rodríguez, Diego H. | Gerpe, Marcela S.
Bioaccumulation of Hg and Cd from food is a complex ecological process that has been oversimplified in the past. Common dolphins (Delphinus delphis) provide a powerful model to biomonitor metal concentrations in marine environments worldwide. We combined proportions-based nutritional geometry with metal analysis, stomach content analysis and the proximate composition of prey, to yield novel insights into the accumulation of Hg and Cd. Our analysis showed an age-related accumulation trend for Cd and Hg in kidney and liver, with highest concentrations found at 18 years of age. When viewed through the lens of nutritional ecology, Argentine anchovy (58.1 Mass %) and South American long-finned squid (22.7 Mass %), provided most of the dietary intake of protein (P) and lipids (L) (P:L ratio = 2.6:1.0) and also represented the main source for Cd and Hg levels accumulated in their bodies. This study presents unprecedented evidence on metal accumulation in relation to age and nutritional intake in a marine predator.
Show more [+] Less [-]Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity Full text
2020
Zhang, Haiyun | Vidonish, Julia | Lv, Weiguang | Wang, Xilong | Álvarez, Pedro
The growing use of graphene-based nanomaterials (GBNs) for various applications increases the probability of their environmental releases and calls for a systematic assessment of their potential impacts on soil invertebrates that serve as an important link along terrestrial food chains. Here, we investigated the response of earthworms (Eisenia fetida) to three types of multi-layer graphenes (MLGs) (G1, G2 and G3 with 12–15 layers) with variable morphology (lateral sizes: 7.4 ± 0.3, 6.4 ± 0.1 and 2.8 ± 0.1 μm; thicknesses: 5.0 ± 0.1, 4.2 ± 0.1 and 4.0 ± 0.2 nm, respectively) and hydrophobicity ((O + N)/C ratios: 0.029, 0.044 and 0.075; contact angles: 122.8, 118.8 and 115.1°, respectively). Exposure to these materials was conducted for 28 days (except for 48-h avoidance test) separately in potting or farm soil at 0.2% and 1% by weight. Earthworms avoided both soils when amended with 1% of the smaller and more hydrophilic MLGs (G2 and G3), leading to a decreased trend in worm cocoon formation. The smallest and most hydrophilic MLG (G3), which was easier to assimilate, also significantly inhibited the viability (20.2–56.0%) and mitochondrial membrane potential (32.0–48.5%) of worm coelomocytes in both soils. In contrast, oxidative damage (indicated by lipid peroxides) was more pronounced upon exposure to more hydrophobic and larger graphenic materials (G1 and G2), which were attributed to facilitated adhesion to and disruption of worm membranes. These findings highlight the importance of MLG morphology and hydrophobicity in their potential toxicity and mode of action, as well as ecological risks associated with incidental and accidental releases.
Show more [+] Less [-]Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs Full text
2020
Liu, Xiangyu | Xiao, Ran | Li, Ronghua | Amjad, ʻAlī | Zhang, Zengqiang
The remediation of cadmium (Cd) contaminated soil has become a global problem due to its toxicity to living organisms. In this study, earthworm (Eisenia fetida) alone or combined with EDTA or bean dregs were used for Cd removal from soils. The total and available Cd in soils, soil physicochemical and biological (soil enzyme) properties, Cd accumulation in the earthworm and its antioxidant responses towards Cd, were determined during the 35 days of soil incubation experiment. Our results showed that earthworms were capable of removing Cd from soils, and the remediation process was accelerated by both EDTA and bean dregs. By translocation of Cd from soils, the content of Cd in earthworm steadily increased with the exposure time to 8.11, 12.80, and 9.26 mg kg⁻¹ on day 35 for T2 (earthworm alone), T3 (EDTA enhancement), and T4 (bean dregs enhancement), respectively. Consequently, a great reduction in the Cd contents in soils was achieved in T3 (36.53%) and T4 (30.8%) compared with T2 (28.95%). The concentrations of water/DTPA extractable Cd were also reduced, indicating the low Cd mobility after amendment. Finally, the soil became more fertile and active after wermi-remediation. The soil pH, EC, NO₃⁻-N, available P, and K contents increased, while soil SOM, DOC, and NH₄⁺-N contents were decreased. There were higher soil enzyme activities (including acid phosphatase activity, β-glucosidase activity, and urease activity) among treatments with earthworms. Additionally, the operational taxonomic units (OTUs) increased by 100–150 units, and the higher chao1 and Shannon indexes indicated the enhanced microbial community after wermi-remediation, especially among treatment with EDTA and bean dregs. Therefore, we concluded that earthworms, alone or combined with EDTA and bean dregs, are feasible for the remediation of Cd-contaminated soil.
Show more [+] Less [-]Historical records and contamination assessment of potential toxic elements (PTEs) over the past 100 years in Ny-Ålesund, Svalbard Full text
2020
Yang, Zhongkang | Yuan, Linxi | Xie, Zhouqing | Wang, Jun | Li, Zhaolei | Tu, Luyao | Sun, Liguang
Ny-Ålesund has been significantly impacted by anthropogenic activities (e.g. coal mining, scientific research, tourist shipping) over the past 100 years. However, the studies of potential toxic elements (PTEs) contamination in Ny-Ålesund currently mainly focus on surface soil or surface fjord sediments, and little is known about the history and status of PTEs contamination over the past 100 years. In this study, we collected a palaeo-notch sediment profile YN, analyzed the contents of six typical PTEs (Cu, Pb, Cd, Hg, As, Se) in the sediments, and assessed the historical pollution status in Ny-Ålesund using the pollution load index, geo-accumulation index and enrichment factor. The results showed that the contents of PTEs over the past 100 years increased rapidly compared with those during the interval of 9400-100 BP. In addition, Pb, Cd and Hg showed a clear signal of enrichment and were the main polluters among the PTEs analyzed. The contamination was likely linked to gas-oil powered generators, coal mining, research station, tourist shipping and long-range transport of pollutants.
Show more [+] Less [-]