Refine search
Results 541-550 of 6,473
Microplastic pollution in water and sediment in a textile industrial area
2020
Deng, Hua | Wei, Ren | Luo, Wenya | Hu, Lingling | Li, Bowen | Di, Ya’nan | Shi, Huahong
Microplastics pollution in the environment is closely determined by the surrounding industrial and human activities. In present study, we investigated microplastics in water and sediment samples collected from a textile industrial area in Shaoxing city, China. The abundance of microplastics varied from 2.1 to 71.0 items/L in surface water samples, and from 16.7 to 1323.3 items/kg (dw) in sediment samples. The polymer type was dominated by polyester both in water (95%) and sediment (79%) samples. The majority of the detected microplastics was predominantly colored fibers smaller than 1 mm in diameter. The high level of microplastic pollution detected in local freshwater and sediment environments was attributed to the production and trading activities of textile industries, for which severe regulations should be envisaged in the future to effectively reduce the local microplastic pollution.
Show more [+] Less [-]Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk)
2020
Tang, Tianhao | Liu, Xiaochun | Wang, Longqian | Zuh, Achuo Anitta | Qiao, Weichuan | Huang, Jun
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Show more [+] Less [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Show more [+] Less [-]Outdoor-to-indoor transport of ultrafine particles: Measurement and model development of infiltration factor
2020
Chen, Chen | Yao, Mingyao | Luo, Xu | Zhu, Yulin | Liu, Zhaoyang | Zhuo, Hanchen | Zhao, Bin
Ambient ultrafine particles (UFPs: particles of diameter less than 100 nm) cause significant adverse health effects. As people spend most time indoors, the outdoor-to-indoor transport of UFPs plays a critical role in the accuracy of personal exposure assessments. Herein, a strategy was proposed to measure and analyze the infiltration factor (Fᵢₙf) of UFPs, an important parameter quantifying the fraction of ambient air pollutants that travel inside and remain suspended indoors. Ninety-three measurements were conducted in 11 residential rooms in all seasons in Beijing, China, to investigate Fᵢₙf of UFPs and its associated influencing factors. A multilevel regression model incorporating eight possible factors that influence infiltration was developed to predict Fᵢₙf and FᵢₙfSOA (defined as the ratio of indoor to outdoor UFP concentrations without indoor sources, but with indoor secondary organic aerosol (SOA) formation). It was found that the air change rate was the most important factor and coagulation was considerable, while the influence of SOA formation was much smaller than that of other factors. Our regression model accurately predicted daily-average Fᵢₙf. The annually-averaged Fᵢₙf of UFPs was 0.66 ± 0.10, which is higher than that of PM₂.₅ and PM₁₀, demonstrating the importance of controlling indoor UFPs of outdoor origin.
Show more [+] Less [-]Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes
2020
Feng, Jingjing | Zhang, Yanli | Song, Wei | Deng, Wei | Zhu, Ming | Fang, Zheng | Ye, Yuqing | Fang, Hua | Wu, Zhenfeng | Lowther, Scott | Jones, Kelvin C. | Wang, Xinming
Liquefied petroleum gas (LPG) as an alternative fuel is increasingly used in mainland China, few reports are however available about emissions from LPG-fueled vehicles. In this study, 26 LPG-fueled taxis in Guangzhou, south China were tested using a chassis dynamometer to obtain their emission factors of nitrogen oxides (NOₓ) and volatile organic compounds (VOCs) under idle and cruising (10–60 km h⁻¹) modes. The emission factors of NOₓ on average increased with speed from 4.13 g kg-fuel⁻¹ at idling to 71.1 g kg-fuel⁻¹ at 60 km h⁻¹ at a slope of 10.6 g kg-fuel⁻¹ per 10 km h⁻¹ increase in speed. Alkanes were the most abundant (71.9%) among the VOCs in the exhaust, followed by alkenes (25.2%), ethyne (2.7%), and aromatic species (0.2%). Emission factors of VOCs at idling averaged 8.24 g kg-fuel⁻¹, higher than that of 6.23–7.36 g kg-fuel⁻¹ when cruising at 10–60 km h⁻¹, but their ozone formation potentials (OFPs) were lower at idling (15.8 g kg-fuel⁻¹) than under cruising (19.1–23.8 g kg-fuel⁻¹) largely due to higher emission of more reactive alkenes under cruising mode. Emissions of both NOx and VOCs increased significantly with mileages. Measured emission factors of NOₓ and reactive VOCs in this study suggested that replacing the gasoline-powered taxis with the LPG-fueled taxis with LPG-gasoline bi-fuel engines and no efficient after-treatment devices would not benefit in reducing the emissions of ozone precursors, and strengthening the emission control for LPG vehicles with dedicated LPG engines and after-treatment converters, as did in Hong Kong, could further benefit in reducing the emission of photochemically active species when using LPG as alternative fuels.
Show more [+] Less [-]The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis
2020
Tang, Hong | Cheng, Zilu | Li, Na | Mao, Shuyuan | Ma, Runxue | He, Haijun | Niu, Zhiping | Chen, Xiaolu | Xiang, Hao
Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM₂.₅(PM with an aerodynamic diameter ≤2.5 μm)/PM₁₀ (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects models for calculating the pooled estimate of markers. To assess the potential effect modifiers and the source of heterogeneity, we conducted subgroup analyses and meta-regression analyses where appropriate. The assessment and correction of publication bias were based on Begg’s and Egger’s test and “trim-and-fill” analysis. We identified 44 eligible studies. For short-term PM exposure, the percent change of a 10 μg/m³ PM₂.₅ increase on TNF-α and fibrinogen was 3.51% (95% confidence interval (CI): 1.21%, 5.81%) and 0.54% (95% confidence interval (CI): 0.21%, 0.86%) respectively. We also found a significant short-term association between PM₁₀ and fibrinogen (percent change = 0.17%, 95% CI: 0.04%, 0.29%). Overall analysis showed that long-term associations of fibrinogen with PM₂.₅ and PM₁₀ were not significant. Subgroup analysis showed that long-term associations of fibrinogen with PM₂.₅ and PM₁₀ were significant only found in studies conducted in Asia. Our findings support significant short-term associations of PM with TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.
Show more [+] Less [-]Fe1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: Preparation of biochar, enrichment of thiobacillus and their function on soil lead
2020
Ye, Junpei | Liao, Wenmin | Zhang, Panyue | Li, Juan | Nabi, Mohammad | Wang, Siqi | Cai, Yajing | Li, Fan
Properly increasing mobility of heavy metals could promote phytoremediation of contaminated soil. Fe₁₋ₓS/biochar was successfully prepared from sawdust with loading pyrrhotite (Fe₁₋ₓS) at a pyrolysis temperature of 550 °C. Thiobacillus were successfully adsorbed and enriched on the surface of Fe₁₋ₓS/biochar. Microbial growth for 36 d supported by bio-oxidization of Fe₁₋ₓS decreased the system pH from 4.32 to 3.50, increased the ORP from 298 to 487 mV, and the Fe³⁺ release reached 25.48 mg/g, enhancing the oxidation and leaching of soil Pb. Finally, Fe₁₋ₓS/biochar and Thiobacillus were simultaneously applied into Pb-contaminated soil for 60 d, the soil pH decreased from 7.83 to 6.72, and the exchangeable fraction of soil Pb increased from 22.86% to 37.19%. Ryegrass planting for 60 d in Pb-contaminated soil with Fe₁₋ₓS/biochar and Thiobacillus showed that the Pb content in shoot and root of ryegrass increased by 55.65% and 73.43%, respectively, confirming an obvious increase of phytoavailability of soil Pb. The relative abundance of Thiobacillus in remediated soil significantly increased from 0.06% to 34.55% due to the addition of Fe₁₋ₓS/biochar and Thiobacillus. This study provides a novel approach for regulating the Pb phytoavailability for phytoremediation of Pb-contaminated soil.
Show more [+] Less [-]Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth
2020
Ryan, Peter G. | Suaria, Giuseppe | Perold, Vonica | Pierucci, Andrea | Bornman, Thomas G. | Aliani, Stefano
Microfibres are one of the most ubiquitous particulate pollutants, occurring in all environmental compartments. They are often assumed to be microplastics, but include natural as well as synthetic textile fibres and are perhaps best treated as a separate class of pollutants given the challenges they pose in terms of identification and contamination. Microfibres have been largely ignored by traditional methods used to sample floating microplastics at sea, which use 300–500 μm mesh nets that are too coarse to sample most textile fibres. There is thus a need for a consistent set of methods for sampling microfibres in seawater. We processed bulk water samples through 0.7–63 μm filters to collect microfibres in three ocean basins. Fibre density increased as mesh size decreased: 20 μm mesh sampled 41% more fibres than 63 μm, and 0.7 μm filters sampled 44% more fibres than 25 μm mesh, but mesh size (20–63 μm) had little effect on the size of fibres retained. Fibre density decreased with sample volume when processed through larger mesh filters, presumably because more fibres were flushed through the filters. Microfibres averaged 2.5 times more abundant at the sea surface than in water sampled 5 m sub-surface. However, the data were noisy; counts of replicate 10-L samples had low repeatability (0.15–0.36; CV = 56%), suggesting that single samples provide only a rough estimate of microfibre abundance. We propose that sampling for microfibres should use a combination of <1 μm and 20–25 μm filters and process multiple samples to offset high within-site variability in microfibre densities.
Show more [+] Less [-]Main factors dominating the development, formation and dissipation of hypoxia off the Changjiang Estuary (CE) and its adjacent waters, China
2020
Chi, Lianbao | Song, Xiuxian | Yuan, Yongquan | Wang, Wentao | Cao, Xihua | Wu, Zaixing | Yu, Zhiming
Hypoxia off the Changjiang Estuary (CE) and its adjacent waters is purported to be the most severe in China, attracting considerable concern from both the scientific community and the general public. Currently, continuous observations of dissolved oxygen (DO) levels covering hypoxia from its appearance to disappearance are lacking. In this study, twelve consecutive monthly cruises (from February 2015 to January 2016) were conducted. The consecutive spatiotemporal variations in hypoxia throughout the annual cycle were elucidated in detail, and the responses of annual variations in hypoxia to the different influential factors were explored. Overall, hypoxia experienced a consecutive process of expanding from south to north, then disappearing from north to south. The annual variations in hypoxia were mainly contingent on stratification variations. Among different stages, there was significant heterogeneity in the dominant factors. Specifically, low-DO waters initially appeared from the intrusion of nearshore Kuroshio branch current (NKBC), as NKBC intrusion provided a low-DO background and triggered stratification. Thereafter, stratification was enhanced and gradually expanded northward, which promoted the extension of low-DO areas. The formation of hypoxia was regionally selective, and more intense organic matter decomposition at local regions facilitated the occurrence and discontinuous distribution of hypoxia. Hypoxic zones were observed at the Changjiang bank and Zhejiang coastal region from August (most extensively at 14,800 km²) to October. Thereafter, increased vertical mixing facilitated the dissipation of hypoxia from north to south.
Show more [+] Less [-]Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model
2020
Zhang, Qianqian | Wang, Huiwei | Lu, Chuan
Sulfate (SO₄²⁻) contamination in groundwater and surface water is an environmental problem of widespread concern. In this study, we combined stable isotope analyses of SO₄²⁻ (δ³⁴S and δ¹⁸O) and water (δ²H and δ¹⁸O) with a Bayesian mixing model (SIAR), for the first time, to identify sources and transformation of SO₄²⁻ in an area of northern China with multiple potential sources of pollution. The overall values of δ³⁴S and δ¹⁸O-SO₄²⁻ ranged from 1.3‰ to 16.3‰ and −3.8‰–8.8‰ in groundwater, and from −1.1‰ to 9.3‰ and 2.7‰–9.2‰ in surface waters, respectively. Analyses of SO₄²⁻ isotopes and water chemistry indicated that SO₄²⁻ in groundwater and surface water mainly originated from mixing of oxidation of sulfate, sewage, chemical fertilizers, dissolution of evaporite and precipitation. There was no significant correlation between δ³⁴S and δ¹⁸O and SO₄²⁻ concentration in groundwater, indicating that bacterial sulfate reduction did not affect the SO₄²⁻ isotopic composition. SIAR model showed the main sources of SO₄²⁻ in groundwater and surface water comprised oxidation of sulfide minerals and sewage. In groundwater, oxidation of sulfide minerals and sewage accounted for 37.5–44.5% and 35.5–42.7% of SO₄²⁻, respectively. In regard to surface waters, the contribution of oxidation of sulfide minerals to SO₄²⁻ was higher in the wet season (31.8 ± 9.9%) than in the intermediate (22.4 ± 7.8%) and dry (20.9 ± 8.2%) seasons, but the contribution proportion of sewage was slightly lower in the wet season (19.9 ± 8.5%) than in the intermediate (23.8 ± 8.7%) and dry (24.2 ± 8.5%) seasons. This study indicates that it is necessary for local government to improve the treatment infrastructure for domestic sewage and optimize methods of agricultural fertilization and irrigation to prevent SO₄²⁻ contamination of groundwater and surface water.
Show more [+] Less [-]