Refine search
Results 551-560 of 796
Silicon Effects on Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil Full text
2009
da Cunha, Karina Patrícia Vieira | do Nascimento, Clístenes Williams Araújo
Silicon presents a close relationship with the amelioration of heavy metals phytotoxicity. However, mechanisms of Si-mediated alleviation of metal stress remains poorly understood. This work aimed at studying the relationship between the accumulation of Si, Cd, and Zn and the tolerance and structural alterations displayed by maize plants grown on a Cd and Zn enriched soil treated with doses of Si (0, 50, 100, 150, and 200mg kg⁻¹) as calcium silicate (CaSiO₃). The results showed that the maize plants treated with Si presented not only biomass increasing but also higher metal accumulation. Significant structural alterations on xylem diameter, mesophyll and epidermis thickness, and transversal area occupied by collenchyma and midvein were also observed as a result of Si application. The deposition of silica in the endodermis and pericycle of roots seems to play an important role on the maize tolerance to Cd and Zn stress.
Show more [+] Less [-]Heavy Metal Pollution in Soils Around the Abandoned Mine Sites of the Iberian Pyrite Belt (Southwest Spain) Full text
2009
Fernández-Caliani, J. C. | Barba-Brioso, C. | González, I. | Galan, E.
This paper investigates the pollution load of selected trace elements in 32 soil samples collected around 21 different mining areas of the Iberian Pyrite Belt (Southwest Spain), integrating chemical data with soil parameters to help understand the partitioning and mobility of pollutants. The minesoils are depleted in acid neutralising minerals and show limiting physicochemical properties, including low pH values and very high anomalies of potentially hazardous metals. The total concentrations of As (up to 1,560 mg kg⁻¹) and certain heavy metals (up to 2,874 mg kg⁻¹ Cu, 6,500 mg kg⁻¹ Pb, 6,890 mg kg⁻¹ Zn, 62 mg kg⁻¹ Hg and 22 mg kg⁻¹ Cd) are two orders of magnitude above the soil background values. The close association of Cd and Zn with the carbonate content in lime-amended minesoils suggests metal immobilisation through adsorption and/or co-precipitation mechanisms, after acid neutralisation, whereas As and Pb are similarly partitioned into the soil and mostly associated with iron oxy-hydroxides.
Show more [+] Less [-]Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact Full text
2009
Rentizelas, A | Tolis, A | Tatsiopoulos, I
Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases.
Show more [+] Less [-]An Analysis of the Indoor Air Quality and Mould Growth in a Multi-zone Building Full text
2009
Chowdhury, Ashfaque Ahmed | Rasul, M. G | Khan, M. M. K
The effects of poor indoor air quality and mould growth in working environment are major problems in built environment, and there is a need to look for improvement of the health, comfort and productivity of the building occupants. Airborne mould sampling studies were conducted in a reference building located in Rockhampton, Central Queensland, Australia. Both indoor culturable and mould spore levels were observed. It was found through the indoor-outdoor ratios of the species that indoor concentrations are mostly related to the outdoor mould levels. The moulds differ in their relative humidity and temperature requirements to support surface growth. Indoor humidity has a significant effect on occupants comfort, perceived air quality, occupants' health, building durability, emissions and energy efficiency. Practical hygrothermal simulation models are employed to analyse the combined heat and moisture behaviour within the built environment. A review of the current modelling options available to predict building performance based on energy and mass transport simulation is presented, and then a case study is presented with the assessment of indoor built environment to avoid mould problem.
Show more [+] Less [-]Impact of Eco-restoration on the Biodiversity of Sundarbans Mangrove Ecosystem, India Full text
2009
Chakraborty, S. K | Giri, S | Chakravarty, G | Bhattacharya, N
A comprehensive study on biodiversity and environmental characteristics of three different selected study sites located on different estuarine networks viz. Matla, Saptamukhi, and Hooghly on eastern, central, and western regions, having different environmental features of Sundarbans Mangrove Ecosystem, India, a World Heritage Site, was conducted through six seasons of consecutive 2 years. The different sites understudy have shown variable species composition. Special emphasis was made to record the population structure of benthic fauna, which exhibited maximum density during pre-monsoon followed by monsoon and post-monsoon. Physicochemical parameters displayed a wide range of fluctuation through different seasons and also revealed differences among different study sites. Biotic community structures of different study sites have been analyzed using different community indices like similarity index, dominance index, diversity index, and evenness index. Moreover, in order to evaluate the environmental stress on the environmental health of this dynamic mangrove ecosystem of global importance, species pollution value and community pollution value have been deduced as a new model of biotic indices based on the distribution patterns of both zooplanktons and benthic fauna. Canonical correspondence analysis revealed the cumulative influence of a group of environmental parameters on the abundance of different components of biodiversity. The study site II (Saptamukhi), encircled by undisturbed mangrove islands, revealed the least pollution stress and higher biological diversity followed by Jharkhali (study site I), which is in the process of eco-restoration and Bokkhali (study site III), which has been under anthropogenic stress especially from ecotourism.
Show more [+] Less [-]The Emergent Science of Engineering a Sustainable Urban Environment Full text
2009
Goudie, Douglas
Engineering is taking a lead role in sustainability implementation, despite problems linking institutional decision-makers with such things as water purification and cleansing wetlands. An emerging science may help speed an all-system approach to implementing sustainable urban planning. The many innovative approaches to engineering and planning will lead to cities and suburbs where water, urban travel, energy chains and food provision infrastructures are bound together by ESD values, flow-on principles and a workable process of sustainability achievement. JCU Townsville is developing such a process of Sustainability Implementation Planning (SIP) and Engineering, aspiring to become a tropics sustainability exemplar. This article reports on a 90-strong workshop: Paths to Sustainability held in August 2008, with strong regional leadership support. An integrated intellectual frame and ‘futures oriented' blueprint is provided to achieve the myriad cultural, social, economic, energy, water, food, engineering and environmental needs to ‘go sustainable' in an urban setting, where most of us live. The workshop results show SIP water management begins with local raindrops, local capture, local ground penetration, use and reuse, entering local nutrient flows to local urban food gardens and then used as a source to grow aquatic protein and fuel oils. Energy engineering becomes a local mix of renewables and innovative storage, appropriate building design, transport systems and industry; including embodied and life-cycle energy analysis and careful considerations in all built structure and use. Urban planning, people movement, housing location and travel mode will increasingly be judged by energy costs, as will food production.
Show more [+] Less [-]Arsenic Removal from Dilute Solutions by High Surface Area Mesoporous Iron Oxyhydroxide Full text
2009
Masih, Dilshad | Seida, Yoshimi | Izumi, Yasuo
Mesostructured iron oxyhydroxide (FeO x ) and iron oxyhydroxide-phosphate (FeO x P) composites were organized using dodecylsulfate surfactant as a template. X-ray diffraction studies depicted a lamellar structure of the product. Ion exchange and solvent extraction methods were employed for the removal of the surfactant. Carboxylate ions exchanged lamellar type mesostructured material reorganized to a wormhole-like mesoporous material when heated under N₂ atmosphere. Surfactant was completely removed by carboxylate ions as observed by the Fourier transform infrared spectra. High surface area acetate-exchanged FeO x (230 m² g⁻¹) was obtained after the surfactant removal from the composite (2.8 m² g⁻¹). Surface area of acetate-exchanged FeO x P was the highest (240 m²g⁻¹) after the removal of the surfactant. Local structure of iron species of FeO x was investigated by X-ray absorption fine structure spectroscopy. Further, Fe···Fe bond appeared at 3.21-3.25 Å with coordination number 2-3, showing a high degree of un-saturation of Fe···Fe bonds. As compared with bulk iron oxyhydroxide and iron-intercalated montmorillonite, the mesoporous iron materials were highly effective for arsenic removal from low concentrations of aqueous solutions. Furthermore, mesoporous iron materials were stable in aqueous phase.
Show more [+] Less [-]Environmental Impact of Mining Activities in the Southern Sector of the Guadiana Basin (SW of the Iberian Peninsula) Full text
2009
Delgado, J. | Sarmiento, A. M. | Condesso de Melo, M. T. | Nieto, J. M.
The southern sector of the Guadiana River basin (GRB) drains the central-western part of the Iberian Pyrite Belt, an area with many polymetallic sulfide deposits and residues of mining activities that under oxidizing conditions generate an acidic leachate with large quantities of sulfates, metals, and metalloids in solution. These acidic leachates seep into the fluvial system contaminating the surface water bodies and increasing the contamination risk for local populations and riparian habitats. The present study was carried out both in Portugal and Spain with the main aim of identifying the principal contamination sources that produce acid mine drainage (AMD) in the southern part of the GRB and to evaluate the seasonal variations of water quality affected by AMD. The physicochemical parameters determined in the field (temperature, electrical conductivity, pH, redox potential, and dissolved oxygen) are discussed and interpreted together with the hydrochemical analysis of surface water samples collected at 79 points of observation. The data show a strong seasonal variation of surface water quality with poorer water quality standards during the dry season. It is also possible to observe that there is a natural decrease in pollution levels with increasing distance from the pollution source (mining areas). Acidic leachates are gradually neutralized as they drain away from the mining areas depositing Fe-(Cu-Al) bearing secondary minerals. There is also an important contaminant load reduction in the estuary area as a result of the mixing process with seawater. This contributes to a loss of the metals in solution due to both dilution and precipitation, as a result of pH increase.
Show more [+] Less [-]Nutrient Removal in Pilot-Scale Constructed Wetlands Treating Eutrophic River Water: Assessment of Plants, Intermittent Artificial Aeration and Polyhedron Hollow Polypropylene Balls Full text
2009
Tang, Xianqiang | Huang, Suiliang | Scholz, Miklas | Li, Jinzhong
Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia-nitrogen (NH₄-N), nitrate-nitrogen (NO₃-N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH₄-N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m² day, 1.34 g NH₄-N/m² day, 1.04 g TN/m² day, 0.07 g SRP/m² day and 0.07 g TP/m² day removal, if compared to non-aerated wetlands without PHPB being presented.
Show more [+] Less [-]Aerosol Inorganic Ions in a Semiarid Region on the Southeastern Spanish Mediterranean Coast Full text
2009
Nicolás, J. F. | Galindo, N. | Yubero, E. | Pastor, C. | Esclapez, R. | Crespo, J.
PM2.5 and PM10 samples were collected in the urban atmosphere of Elche (southeastern Spain) between December 2004 and November 2005. The samples were analyzed for mass and water-soluble inorganic ions (Na⁺, [graphic removed] , K⁺, Ca²⁺, Mg²⁺, Cl⁻, [graphic removed] and [graphic removed] ) with the aim of investigating the influence of the climatic and geographic features of a coastal semiarid area on the contribution of these species to PM levels. Secondary inorganic ions ( [graphic removed] , [graphic removed] , [graphic removed] ) were the major components in the fine fraction (PM2.5), accounting for 40% of the total mass. The relationship between non-marine [graphic removed] and [graphic removed] indicated that fine sulfate particles were completely neutralized by ammonium. In the coarse fraction (PM10-2.5), nitrate (as NaNO₃ and Ca(NO₃)₂), together with crustal (CaCO₃) and marine species (NaCl) accounted for almost 50% of the total mass. Fine sulfate and coarse nitrate showed summer maximums. In contrast, the concentrations of fine [graphic removed] were lowest in the warm period. Ammonium presented both winter and summer maximums. The levels of marine ions, except for coarse Cl⁻, were highest in summer when the dominant wind flow is from the sea. No significant seasonal variations were observed for coarse Ca²⁺ and [graphic removed] . The concentrations of all inorganic ions increased during Saharan dust events, in particular, fine [graphic removed] and [graphic removed] and coarse [graphic removed] . Coarse calcium was proved not to be a good tracer for this type of episode in our region since the average levels of this cation are elevated and the relative increase in its concentrations during African events was not as high as expected.
Show more [+] Less [-]