Refine search
Results 551-560 of 736
Assessment of Deep Groundwater Quality in Kathmandu Valley Using Multivariate Statistical Techniques
2010
Chapagain, Saroj Kumar | Pandey, Vishnu P. | Shrestha, Sangam | Nakamura, Takashi | Kazama, Futaba
This study was carried out to assess the overall water quality and identify major variables affecting the deep groundwater quality in Kathmandu Valley, Nepal. Forty-two deep wells were sampled during premonsoon and monsoon seasons in 2007 and analyzed for the major physicochemical variables. The water quality variables such as NH ₄ ⁺ -N, Fe, Pb, As, and Cd at most of the sampling locations exceeded the World Health Organization guideline levels for drinking water. Multivariate statistical techniques such as factor analysis and cluster analysis were applied to identify the major factors (variables) corresponding to the different source of variation in deep groundwater quality. Factor analysis indentified six major factors explaining 74.77% of the total variance in water quality; and the major variations are related with the degree of groundwater mineralization, decomposition of organic matter, and reduction of groundwater environment. The water quality of deep groundwater is influenced by the natural hydrogeochemical environment. The wells are broadly divided into two major groups based on the similar groundwater characteristics using cluster analysis. Results show that water quality of deep groundwater does not vary significantly as a function of season.
Show more [+] Less [-]Decreases in Condition and Fecundity of Freshwater Fishes in a Highly Polluted Reservoir
2010
Benejam, Lluís | Benito, Josep | García-Berthou, Emili
Despite many efforts for pollution abatement in aquatic ecosystems, there are still some cases of high accumulation of industrial pollutants due to past activities. In Flix reservoir (Ebro River, Spain), there are around 200,000-360,000 tons of industrial pollutants with a high concentration of heavy metals and organochlorides due to the activity of an organochlorine industry during more than half a century. This exceptional amount of pollutants provides a good opportunity (and need) to analyse their effects on fish populations under natural conditions, which is rarely available to ecotoxicologists. We compared the reproductive traits and prevalence of diseases and parasites at this impacted area with a neighbouring upstream reservoir unaffected by the pollution (reference sites) and also to downstream sites. Deformity, eroded fin, lesion and tumour (DELT) anomalies and ectoparasites were clearly more frequent at the impacted area for several fish species (common carp, roach and pumpkinseed). A significant negative impact of Flix reservoir on condition (eviscerated and liver weights, adjusted for fish size with analysis of covariance) and reproductive traits (gonadal weight and number of mature eggs, adjusted for fish size) was also detected for several fish species. The responses to the pollutants were species-specific, and common carp (Cyprinus carpio) was the species with the clearest effects on fitness-related traits at the impacted area, despite also being among the most tolerant to pollution.
Show more [+] Less [-]Assessment of Radionuclides, Trace Metals and Radionuclide Transfer from Soil to Food of Jhangar Valley (Pakistan) Using Gamma-Ray Spectrometry
2010
Khan, Hasan M. | Chaudhry, Zahid S. | Ismail, Muhammad | Khan, Khalid
The gamma spectrometric analysis of soil and essential foodstuffs, e.g., wheat, millet, potato, lentils and cauliflower, which form the main component of the daily diet of the local public, was carried out using high purity germanium (HpGe) detector coupled with a computer based high-resolution multi-channel analyzer. The activity concentration in soil samples for ²²⁶Ra, ²³²Th and ⁴⁰K ranged from 30.0 Bq kg⁻¹ to 81.2 Bq kg⁻¹, 31.4 Bq kg⁻¹ to 78.25 Bq kg⁻¹ and 308.8 Bq kg⁻¹ to 2177.6 Bq kg⁻¹, with mean values of 56.2, 58.5 and 851.9 Bq kg⁻¹, respectively. The average activity measured for ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples was found higher than the world average. The major radionuclide found in the food items studied was ⁴⁰K, while ²²⁶Ra, ²³²Th and ¹³⁷Cs were detected in very nominal amounts. The results clearly indicate that these radionuclides have no health hazard to human beings, as they are well below the annual limit of intake (ALI) for these radionuclides. The transfer factors of these radionuclides from soil to food were also studied. The mean transfer factors of ⁴⁰K, ²²⁶Ra, ²³²Th and ¹³⁷Cs from soil to food were estimated to be about 0.17, 0.07, 0.16 and 0.23, respectively. An artificial radionuclide, ¹³⁷Cs, was also present in detectable amount in all samples. The internal and external hazard indices were measured and had mean values of 0.70 and 0.55, respectively. Absorbed dose rates and effective dose have been determined in the present study. Concentration of trace metals, such as Cr, Pb, Ni and Zn, was also determined in the soil samples. The concentrations of radionuclides and trace metals found in these samples during the present study were nominal and do not pose any potential health hazard to the general public.
Show more [+] Less [-]In Vitro Studies on Atrazine Effects on Human Intestinal Cells
2010
Olejnik, Anna M. | Marecik, Roman | Białas, Wojciech | Cyplik, Paweł | Grajek, Włodzimierz
Considering the importance of the oral route for human exposure to atrazine, we have investigated the possible effect of this herbicide on the human intestinal cells and the integrity of the epithelial barrier, using Caco-2 cells as the intestinal model in vitro. We evaluated possibile cytotoxic and genotoxic effects of atrazine in concentrations ranging from 1 to 250 μM on the Caco-2 cells at different stages of growth after short- and long-term exposure. Results from the tetrazolium blue (MTT) test and the Trypan blue exclusion assay showed that atrazine cytotoxicity was dose- and time-dependent. Obtained data indicated that atrazine at high concentrations (50 and 250 μM) was able to induce effects on Caco-2 proliferation and viability. Moreover, it was found that the long-term exposure to atrazine at the non-cytotoxic dose caused inhibition of the intestinal cell maturation and decreased the transepithelial electrical resistance, the indicator of the epithelial barrier integrity. Studies on the atrazine genotoxicity determined using the single cell microelectrophoresis assay indicated that atrazine did not induce DNA damages in the Caco-2 cells at concentrations of up to 50 μM, whereas enhancement in the DNA damage was observed at 250 μM. Altogether, our results indicate that atrazine at expected human oral exposure concentrations is not able to induce effects on the Caco-2 cell proliferation and viability, but may suppress the intestinal cell differentiation and reduce the cell monolayer integrity. We suggest that chronic exposure on low levels of atrazine may lead to alteration in the expression of the morphological and functional features of the Caco-2 cells related to the transport and barrier function of small intestinal enterocytes. In consequence, this may lead to alterations in the intestinal absorption process.
Show more [+] Less [-]Effects of Elevated CO₂ on Growth and Nutrient Uptake of Eichhornia crassipe Under Four Different Nutrient Levels
2010
Liu, Jun-Zhi | Ge, Ya-Ming | Zhou, Yu-Fei | Tian, Guang-Ming
Although the climate change effects on plants have been a focus for more than two decades, such effects on aquatic species remain largely unknown. To evaluate the potential effects of elevated CO₂ on growth and nutrient uptake of Eichhornia crassipe Solms (commonly known as water hyacinth, the world's most significant invasive aquatic weed), plants were grown at two CO₂ concentrations (380 and 800 ppm) combined with four nutrient levels (oligo-, meso-, eu-, and hypertrophic) for 2 months. Overall, elevated CO₂ consistently enhanced plant growth at all nutrient levels, indicating more infestations of water hyacinth in future natural eutrophic waters. Moreover, the enhancement extent varied among nutrient availabilities, being more in eu- and hypertrophic levels and less in meso- and oligotrophic levels. Furthermore, the CO₂ enrichment-deduced assimilation was allocated more to plant roots than shoots which would improve the nutrient absorption capacity and mostly transferred to offspring ramets rather than maintained at the mother ramet which would benefit the vegetative reproduction. Finally, under elevated CO₂, although the nitrogen (N) and phosphorus (P) contents of E. crassipe slightly decreased which might mean increased difficulties in preventing its infestation by reducing N and/or P in eutrophic waters, the total N and P accumulation increased suggesting higher bioremediation efficiency of using water hyacinth for water eutrophication.
Show more [+] Less [-]Hydrogenated Vegetable Oil Industry Wastewater Treatment using UASB Reactor System with Recourse to Energy Recovery
2010
Shastry, Sunita | Nandy, Tapas | Wate, S. R. | Kaul, S. N.
The investigation was carried out on laboratory scale to assess the feasibility of upflow anaerobic sludge blanket reactor system as a pretreatment for hydrogenated vegetable oil industry wastewater with recourse to energy recovery. The reactor system operated at 35°C, resulted in COD removal efficiency in the range 98.9-80.1% at organic loading varying in the range 1.33-10 kgCOD/m³ day. The specific methane yield varied from 0.295-0.345 m³CH₄/kgCODr. Hydraulic retention time, substrate concentrations, pH, and temperature were also varied to study the influence of operating parameters on reactor performance. The methane content decreased with increase in substrate loading rate, and varied from 53-66.7% under varying operating conditions. Impulse loading studies in terms of hydraulic, organic, and pH though resulted in destabilization of the reactor; however, the reactor rapidly achieved stable performance after steady operation.
Show more [+] Less [-]Successive Ferric and Sulphate Reduction using Dissimilatory Bacterial Cultures
2010
García-Balboa, Camino | Cautivo, Dina | Blázquez, M. L. | González, F. | Muñoz, J. A. | Ballester, A.
In the present work the kinetics of ferric reduction was investigated using dissimilatory ferric- and sulphate-reducing bacterial cultures. The effect of sulphate reduction on Fe(III) reduction was also studied. The study is an attempt to improve the biological reduction rate of Fe(III) as an alternative biotechnological way to the reduction step in steelmaking processing operations. The results obtained show that the reduction of ferric iron and sulphate took place in a successive way and none synergetic effect was detected. The simultaneous action of both metabolic activities did not enhance the process but slowed down the kinetics of ferric reduction. The reduction process of 3 g/L of soluble ferric and 3 g/L of sulphate lasted 25 days. Ferric iron was the first electron acceptor to be reduced in the first 15 days followed by the sulphate reduction in the following 10 days. That result suggests that ferric reduction is a preferential metabolic process over sulphate reduction when both electron acceptors coexist. None improvement in the kinetics was observed using an electron donor concentration in excess. In contrast, the total reduction of ferric ion (3 g/L) with adapted bacterial cultures was achieved in only 36 h. The presence of sulphate had no effect on the ferric reduction. Finally, an improved culture medium for ferric-reducing bacteria is also proposed.
Show more [+] Less [-]Multi-criteria Analysis of Air Pollution with SO₂ and PM₁₀ in Urban Area Around the Copper Smelter in Bor, Serbia
2010
Nikolić, Djordje | Milošević, Novica | Mihajlović, Ivan | Živković, Živan | Tasić, Viša | Kovačević, Renata | Petrović, Nevenka
This work presents the results of 4 years long monitoring of concentrations of SO₂ gas and PM₁₀ in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM₁₀ were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.
Show more [+] Less [-]Estimated Quantities and Trends of Cadmium, Lead, and Mercury in US Municipal Solid Waste Based on Analysis of Incinerator Ash
2010
Aucott, Michael | Namboodiripad, Ambika | Caldarelli, Adriana | Frank, Kenneth | Gross, Herbert
Heavy metals are present in a variety of products and can be released to the environment during product life cycles. The concentration of metals in municipal solid waste (MSW) reflects the amount of metals in products and is directly related to the amount of metals transferred to disposal sites. Measured monthly mean concentrations of cadmium, lead, and mercury in the ash from May 1995 through October 2007 at the Essex County, NJ incinerator and from May 2004 through November 2007 at the Warren County, NJ incinerator were used, along with air emissions data for mercury, to estimate the content of these metals in MSW. Estimated mean concentration and 95% confidence limits for cadmium in MSW at the Essex and Warren facilities, respectively, were 17.4 ± 0.1 and 10.1 ± 1.2 ppm. For lead, the corresponding values were 408 ± 41 and 239 ± 42 ppm, and for mercury, they were 2.6 ± 0.2 and 0.9 ± 0.2 ppm. A trend of increasing cadmium concentrations was found at both facilities. No change vs. time was observed in lead concentrations. Mercury concentration was found to be decreasing over time at the Essex facility.
Show more [+] Less [-]Trace Metal Bioaccumulation and Plant Growth on Dredged River Sediments and Biosolids Mixtures
2010
Ruiz Diaz, Dorivar A. | Darmody, Robert G. | Marlin, John C. | Bollero, German A. | Simmons, F William
Dredged river sediments and biosolids used as amendments for agricultural purposes can provide a suitable plant growth medium, a topsoil substitute. Nevertheless, trace metal bioaccumulation and risk of plant toxicity remains a concern. We conducted a greenhouse experiment to evaluate the plant growth and trace metal bioaccumulation on sediments and biosolid mixtures. These included dredged sediment from the Peoria Lakes portion of the Illinois River and class A biosolids from the Metropolitan Water Reclamation District of Greater Chicago. Six different mixtures were produced in addition to a standard greenhouse mix serving as a control. Barley (Hordeum vulgare) and snap bean (Phaseolus vulgaris) were grown on the mixtures in the greenhouse. Plants grew in all treatments, except for snap beans that were stunted likely by high salt content in unleached biosolid mixtures. The highest overall biomass production for barley was obtained in the treatment composed of 50% sediment and 50% biosolids. For snap bean, the highest biomass productions were obtained in treatments composed of ≤50% biosolids in the mixture. Trace metals in plant tissue were within ranges considered normal, except for Mo in snap bean, which was at a level considered excessive. However, addition of biosolids to sediments decreased Mo plant uptake. Based on our results, sediments mixed with biosolids make a fertile topsoil and have no inherent chemical or physical properties that would preclude its use as a plant growth medium. Adding sediments to unleached fresh biosolids improved plant growth and diminished trace metal uptake. The suggested optimal ratio of sediments to biosolids would be 80:20 to 70:30 by volume in most situations.
Show more [+] Less [-]