Refine search
Results 551-560 of 4,921
Neuroimaging signatures of brain plasticity in adults with prenatal exposure to polychlorinated biphenyls: Altered functional connectivity on functional MRI
2019
Chu, Chih-Pang | Wu, Shao-Wei | Huang, Yi-Jie | Chiang, Ming-Chang | Hsieh, Sung-Tsang | Guo, Yue Leon
Prenatal exposure to polychlorinated biphenyls (PCBs), persistent organic pollutants in food chains and environment, exerts negative effects on children's cognitive function. To study the long-term effects, we examined cognitive functions in the male children of women with substantial PCB exposure in Taiwan during 1978–1979 and investigated neural basis of cognitive function changes through structural magnetic resonance imaging (MRI) and functional MRI (fMRI), which included resting-state and task-activated fMRI with two paradigms: a 2-back task and a picture rotation task. Ten men aged 30.0 ± 3.7 years with prenatal exposure to PCBs and 11 unexposed controls aged 28.1 ± 3.1 years participated. Both groups had similar cognitive phenotypes and behavioral results. Structural MRI analysis results showed that the PCB group had increased cortical thickness over the right inferior parietal lobule. In the resting-state study, the PCB group showed alterations in the default mode network. During the tasks, the PCB group showed decreased task-induced deactivation signals in cognition–associated brain areas during the 2-back task but enhanced deactivations during the picture rotation task. This study demonstrated altered structural MRI as well as resting and task-related fMRI in men with prenatal PCB exposure, suggesting altered brain plasticity and compensatory neuropsychological performance.
Show more [+] Less [-]Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China
2019
Zhuang, Mei | Sanganyado, Edmond | Li, Ping | Liu, Wenhua
Nearshore environments are a critical transitional zone that connects the marine and terrestrial/freshwater ecosystems. The release of anthropogenic chemicals into nearshore ecosystems pose a human and environmental health risk. We investigated the microbial diversity, abundance and function in metal-contaminated sediments collected from the Rongjiang, Hanjiang and Lianjiang River estuaries and adjacent coastal areas using high throughput sequencing. The concentration of nutrients (NO3-N, NO2-N, NH4-N, PO4-P) and metal (Cu, Zn, Cd, Pb, As, Hg) contaminants were higher at the mouth of the rivers compared to the coastal lines, and this was confirmed using cluster analysis. Estimates obtained using geoaccumulation index showed that about 38.9% of the sites were contaminated with Pb and the pollution load index showed that sediment from the mouth of Hanjiang River Estuary was moderately polluted with metals. In the nearshore sediment samples collected, Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria were the dominant phylum with relative abundances of 46.6%, 8.05%, 6.47%, 5.26%, and 4.59%, respectively. There was no significant correlation between environmental variables and microbial abundance and diversity except for total organic carbon (TOC) (diversity; r = 0.569, p < 0.05) and Cr (diversity; r = 0.581, p < 0.05). At phyla level, Nitrospirae had a significant negative correlation with all metals except Cr, while OD1 had a significant positive correlation with all the metals. Overall, changes in nearshore sediment microbial communities by environmental factors were observed, and these may affect biogeochemical cycling.
Show more [+] Less [-]Geolocation of premises subject to radon risk: Methodological proposal and case study in Madrid
2019
Frutos, Borja | Martín-Consuegra, Fernando | Alonso, Carmen | de Frutos, Fernando | Sanchez, Virginia | García-Talavera, Marta
Useful information on the potential radon risk in existing buildings can be obtained by combining data from sources such as potential risk maps, the ‘Sistema de Información sobre Ocupación del Suelo de España’ (SIOSE) [information system on land occupancy in Spain], cadastral data on built property and population surveys. The present study proposes a method for identifying urban land, premises and individuals potentially subject to radon risk. The procedure draws from geographic information systems (GIS) pooled at the municipal scale and data on buildings possibly affected. The method quantifies the magnitude of the problem in the form of indicators on the buildings, number of premises and gross floor area that may be affected in each risk category. The findings are classified by type of use: residential, educational or office. That information may guide health/prevention policies by targeting areas to be measured based on risk category, or protection policies geared to the construction industry by estimating the number of buildings in need of treatment or remediation. Application of the methodology to Greater Madrid showed that 47% of the municipalities have houses located in high radon risk areas. Using cadastral data to zoom in on those at highest risk yielded information on the floor area of the vulnerable (basement, ground and first storey) premises, which could then be compared to the total. In small towns, the area affected differed only scantly from the total, given the substantial proportion of low-rise buildings in such municipalities.
Show more [+] Less [-]Microbial communities are sensitive indicators for freshwater sediment copper contamination
2019
Sutcliffe, B. | Hose, G.C. | Harford, A.J. | Midgley, D.J. | Greenfield, P. | Paulsen, I.T. | Chariton, A.A.
Anthropogenic activities, such as mining and agriculture, have resulted in many freshwater systems having elevated concentrations of copper. Despite the prevalence of this contamination, and the vital ecological function of prokaryotes, just three studies have investigated prokaryote community responses to copper concentration in freshwater sediments. To address this, the current study investigated these communities in outdoor mesocosms spiked with varying copper concentrations. We profiled the prokaryotic communities at the taxonomic level, using next-generation high-throughput sequencing techniques, as well as their function, using baiting with leaf analogues, and Biolog Ecoplates for community-level physiological profiling. Sediments containing just 46 mg kg⁻¹ of copper, had distinctly different microbial communities compared with controls, as determined by both DNA and RNA 16S ribosomal RNA gene (rRNA) profiling. In addition to this, sediment communities displayed a greatly reduced utilisation of carbon substrates under elevated copper, while the communities recruited onto leaf analogues were also disparate from those of control ponds. Given the vital role of prokaryotes in ecosystem processes, including carbon cycling, these changes are potentially of great ecological relevance, and are seen to occur well below the ‘low risk’ sediment quality guideline values (SQGV) used by regulatory bodies internationally.
Show more [+] Less [-]Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood
2019
Sippula, Olli | Huttunen, Kati | Hokkinen, Jouni | Kärki, Sara | Suhonen, Heikki | Kajolinna, Tuula | Kortelainen, Miika | Karhunen, Tommi | Jalava, Pasi | Uski, Oskari | Yli-Pirilä, Pasi | Hirvonen, Maija-Riitta | Jokiniemi, Jorma
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed.The total suspended particulate matter and fine particulate matter (PM₁) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Show more [+] Less [-]Computational insights on agonist and antagonist mechanisms of estrogen receptor α induced by bisphenol A analogues
2019
Cao, Huiming | Wang, Ling | Cao, Mengxi | Ye, Tong | Sun, Yüzhen
Structural analogues of bisphenol A (BPA) have become widely used as alternatives in BPA-free products. Most toxicological investigations have focused on the estrogenic activities of these analogues, which have been considered as potential environmental estrogens. However, recent studies revealed that certain BPA analogues could dramatically inhibit the proliferation of breast cancer cells, and exhibited strong anti-estrogenic effects compared with the antagonist 4-hydroxytamoxifen (OHT). Thus, we adopted computational models combining molecular dynamics simulations and binding free energy calculations to explore the underlying molecular basis of BPA analogues binding to estrogen receptor α (ERα). We also evaluated ligand-induced structural rearrangements of ERα at the atomic level. Conformational analyses showed that induced-fit H-bonding recognition by Thr347 was an important factor distinguishing antagonist from agonist BPA analogues. Moreover, antagonists of BPA analogues could indirectly induce the structural reposition of key helix 12 and produce an antagonistic conformation of ERα. Compared with OHT, the binding affinity of BPA analogues is stronger for antagonists than agonists. Taken together, we therefore propose computational indicators for screening of anti-estrogenic activities of BPA analogues, which may be beneficial for predicting the estrogenic or anti-estrogenic effects of BPA alternatives.
Show more [+] Less [-]Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas
2019
Liu, Jinxin | Zhao, Zhe | Avillan, Johannetsy J. | Call, Douglas R. | Davis, Margaret | Sischo, William M. | Zhang, Anyun
Dairy cattle of different ages experience different living conditions and varied frequency of antibiotic administration that likely influence the distribution of microbiome and resistome in ways that reflect different risks of microbial transmission. To assess the degree of variance in these distributions, fecal and soil samples were collected from six distinct housing areas on commercial dairy farms (n = 7) in Washington State. 16S rRNA gene sequencing indicated that the microbiota differed between different on-farm locations in feces and soil, and in both cases, the microbiota of dairy calves was often distinct from others (P < 0.05). Thirty-two specific antibiotic resistance genes (ARGs) were widely distributed on dairies, of which several clinically relevant ARGs (including cfr, cfrB, and optrA) were identified for the first time at U.S. dairies. Overall, ARGs were observed more frequently in feces and soil from dairy calves and heifers than from hospital, fresh, lactation and dry pens. Droplet-digital PCR demonstrated that the absolute abundance of floR varied greatly across housing areas and this gene was enriched the most in calves and heifers. Furthermore, in an extended analysis with 14 dairies, environmental soils in calf pens had the most antibiotic-resistant Escherichia coli followed by heifer and hospital pens. All soil E. coli isolates (n = 1,905) are resistant to at least 4 different antibiotics, and the PFGE analysis indicated that florfenicol-resistant E. coli is probably shared across geographically-separated farms. This study identified a discrete but predictable distribution of antibiotic resistance genes and organisms, which is important for designing mitigation for higher risk areas on dairy farms.
Show more [+] Less [-]Enhanced Cu(II)-mediated fenton-like oxidation of antimicrobials in bicarbonate aqueous solution: Kinetics, mechanism and toxicity evaluation
2019
Peng, Jianbiao | Zhang, Chaonan | Zhang, Ya | Miao, Dong | Zhang, Yaozong | Liu, Haijin | Li, Jinghua | Xu, Lei | Shi, Jialu | Liu, Guoguang | Gao, Shixiang
Increasing attention has been attracted in developing new technologies to remove chlorofene (CF) and dichlorofene (DCF), which were active agents in antimicrobials for general cleaning and disinfecting. This study investigated the significant influences of bicarbonate (HCO3−) on the degradation of CF and DCF in the Cu(II)-mediated Fenton-like system Cu2+/H2O2. Our results indicate that HCO3− may play a dual role to act 1) as a ligand to stabilize Cu(II), forming soluble [CuII(HCO3−)(S)]+ species to catalyze H2O2 producing hydroxyl radical (OH) and superoxide ion (O2−) and 2) as a OH scavenger. Furthermore, the reaction kinetics, mechanisms, and intermediates of CF and DCF were assessed. The apparent rate constants of CF and DCF were enhanced by a factor of 8.5 and 5.5, respectively, in the presence of HCO3− at the optimized concentration of 4 mM. Based on the intermediate identification and frontier electron densities (FEDs) calculations, the associated reaction pathways were tentatively proposed, including C–C scission, single or multiple hydroxylation, and coupling reaction. In addition, significant reduction in the aquatic toxicity of CF and DCF was observed after treatment with Cu2+/H2O2–HCO3- system, evaluated by Ecological Structure Activity Relationships (ECOSAR) program. These findings provide new insights into Cu(II)-mediated reactions to better understand the environmental fate of organic contaminants in carbonate-rich waters.
Show more [+] Less [-]Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies
2019
Evariste, Lauris | Barret, Maialen | Mottier, Antoine | Mouchet, Florence | Gauthier, Laury | Pinelli, Eric
Gut microbial communities constitute a compartment of crucial importance in regulation of homeostasis of multiple host physiological functions as well as in resistance towards environmental pollutants. Many chemical contaminants were shown to constitute a major threat for gut bacteria. Changes in gut microbiome could lead to alteration of host health. The access to high-throughput sequencing platforms permitted a great expansion of this discipline in human health while data from ecotoxicological studies are scarce and particularly those related to aquatic pollution. The main purpose of this review is to summarize recent body of literature providing data obtained from microbial community surveys using high-throughput 16S rRNA sequencing technology applied to aquatic ecotoxicity. Effects of pesticides, PCBs, PBDEs, heavy metals, nanoparticles, PPCPs, microplastics and endocrine disruptors on gut microbial communities are presented and discussed. We pointed out difficulties and limits provided by actual methodologies. We also proposed ways to improve understanding of links between changes in gut bacterial communities and host fitness loss, along with further applications for this emerging discipline.
Show more [+] Less [-]The distribution variance of airborne microorganisms in urban and rural environments
2019
Liu, Huan | Hu, Zhichao | Zhou, Meng | Hu, Jiajie | Yao, Xiangwu | Zhang, Hao | Li, Zheng | Lou, Liping | Xi, Chuanwu | Qian, Haifeng | Li, Chunyan | Xu, Xiangyang | Zheng, Ping | Hu, Baolan
Microorganisms are ubiquitous in the atmosphere, where they can disperse for a long distance. However, it remains poorly understood how these airborne microorganisms vary and which factors influence the microbial distribution in different anthropogenic activity regions. To explore the regional differences of bacteria and fungi in airborne particles, PM₂.₅ and PM₁₀ samples were collected in the urban and rural areas of Hangzhou. The bacterial and fungal communities in the urban atmosphere was more similar to each other than those in the rural atmosphere. Analyses conducted by the concentration weighted trajectory model demonstrated that the local environment contributed more to the similarity of airborne bacteria and fungi compared with the atmospheric transport. The concentrations of local air pollutants (PM₂.₅, PM₁₀, NO₂, SO₂ and CO) were positively correlated with the similarity of the bacterial and fungal communities. Additionally, the concentrations of these air pollutants in the urban site were about 1.5 times than those in the rural site. This implicated that anthropogenic activity, which is the essential cause of air pollutants, influenced the similarity of airborne bacteria and fungi in the urban area. This work ascertains the outdoor bacterial and fungal distribution in the urban and the rural atmosphere and provides a prospective model for studying the contributing factors of airborne bacteria and fungi.
Show more [+] Less [-]