Refine search
Results 551-560 of 4,895
The release and earthworm bioaccumulation of endogenous hexabromocyclododecanes (HBCDDs) from expanded polystyrene foam microparticles
2019
Li, Bing | Lan, Zhonghui | Wang, Lei | Sun, Hongwen | Yao, Yiming | Zhang, Kai | Zhu, Lusheng
Hexabromocyclododecanes (HBCDDs) are common chemical additives in expanded polystyrene foam (EPS). To evaluate the bioaccumulation potential of endogenous HBCDDs in EPS microparticles by earthworms, two ecologically different species of earthworms (Eisenia fetida and Metaphire guillelmi) were exposed to soil added with EPS microparticles of different particle sizes (EPS2000, 830–2000 μm and EPS830, <830 μm). To clarify the accumulation mechanisms, leaching experiments using EPS microparticles in different solutions were conducted. After exposure to EPS microparticles-amended soils (S-EPS) for 28 d, the total concentrations of HBCDDs reached 307–371 ng g−1 dw in E. fetida and 90–133 ng g−1 dw in M. guillelmi, which were higher than those in earthworms exposed to the soil that was artificially contaminated with a similar level of HBCDDs directly (ACS). The accumulation of HBCDDs in earthworms was significantly influenced by EPS microparticles' size and earthworms' species. The total concentrations of HBCDDs in earthworms' cast were significantly higher than the theoretical concentration of HBCDDs in S-EPS, which suggested that EPS microparticles can be ingested by earthworms. The release rate of HBCDDs from EPS5000 (2000–5000 μm) into water-based solutions (<1%) after a 3.5-h incubation was far lower than that into earthworm digestive fluid (7%). These results illustrated that the ingestion of EPS microparticles and consequent solubilization of HBCDDs by digestive fluid play an important role in the accumulation of HBCDDs contained in EPS microparticles in earthworms. After a 28-d incubation with the soil solution, 4.9% of the HBCDDs was accumulatively leached from the EPS5000, which indicated that HBCDDs can be released from EPS microparticles to soil environment, and then accumulated by earthworms. Moreover, similar to those exposed to ACS, the diastereoisomer- and enantiomer-specific accumulation of HBCDDs in earthworms occurred when exposed to S-EPS. This study provides more evidence for the risk of microplastics to the soil ecosystem.
Show more [+] Less [-]A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution
2019
Zhao, Donglin | Wang, Yangyang | Zhao, Siyu | Wakeel, Muhammad | Wang, Zheng | Shaikh, Rehan S. | Hayat, Tasawar | Chen, Changlun
In this study, graphene aerogel (GA) was successfully prepared through a simple hydrothermal method. The resulting GA exhibited a porous network structure with a large specific surface area (350.8 m²/g), ultra-light mass and easy separation from water. The pHIEP value of the GA was estimated to be 3.5. The adsorption process and the factors that affect adsorption capacity were studied. The adsorption could be conducted in a wide pH range from 2.0 to 7.0. The maximum adsorption capacity of GA towards U(VI) at pH 4.0 and T = 298 K was 238.67 mg/g calculated from the Langmuir model. The GA had greatly rapid adsorption property for the removal of U(VI) at pH 4.0. Kinetic data showed good correlation with pseudo-second-order equation. Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry characterizations showed that GA adsorbed U(VI) through chemical interaction by oxygen-containing and nitrogen-containing groups functional groups. The results show that GA has excellent application potential as an adsorbent material for removing U(VI) from aqueous solution.
Show more [+] Less [-]Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate
2019
Swart, Elmer | de Boer, Tjalf E. | Chen, Guangquan | Vooijs, Riet | van Gestel, Cornelis A.M. | Straalen, N. M. van | Roelofs, Dick
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC₅₀ for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Show more [+] Less [-]Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits
2019
Rusinowski, S. | Krzyżak, J. | Sitko, K. | Kalaji, H.M. | Jensen, E. | Pogrzeba, M.
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha−1) and S. pectinata (12.6 ± 1.2 t d.m. ha−1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha−1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Show more [+] Less [-]A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure
2019
Gierer, Fiona | Vaughan, Sarah | Slater, Mark | Thompson, Helen M. | Elmore, J Stephen | Girling, Robbie D.
In recent years, the impact of Plant Protection Products (PPPs) on insect pollinator decline has stimulated significant amounts of research, as well as political and public interest. PPP residues have been found in various bee-related matrices, resulting in governmental bodies worldwide releasing guidance documents on methods for the assessment of the overall risk of PPPs to different bee species. An essential part of these risk assessments are PPP residues found in pollen and nectar, as they represent a key route of exposure. However, PPP residue values in these matrices exhibit large variations and are not available for many PPPs and crop species combinations, which results in inaccurate estimations and uncertainties in risk evaluation. Additionally, residue studies on pollen and nectar are expensive and practically challenging. An extrapolation between different cropping scenarios and PPPs is not yet justified, as the behaviour of PPPs in pollen and nectar is poorly understood. Therefore, this review aims to contribute to a better knowledge and understanding of the fate of PPP residues in pollen and nectar and to outline knowledge gaps and future research needs. The literature suggests that four primary factors, the crop type, the application method, the physicochemical properties of a compound and the environmental conditions have the greatest influence on PPP residues in pollen and nectar. However, these factors consist of many sub-factors and initial effects may be disguised by different sampling methodologies, impeding their exact characterisation. Moreover, knowledge about these factors is ambiguous and restricted to a few compounds and plant species. We propose that future research should concentrate on identifying relationships and common features amongst various PPP applications and crops, as well as an overall quantification of the described parameters; in order to enable a reliable estimation of PPP residues in pollen, nectar and other bee matrices.
Show more [+] Less [-]Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct
2019
Hepburn, Emily | Madden, Casey | Szabo, Drew | Coggan, Timothy L. | Clarke, Bradley | Currell, Matthew
The extent of per- and polyfluoroalkyl substances (PFAS) in groundwater surrounding legacy landfills is currently poorly constrained. Seventeen PFAS were analysed in groundwater surrounding legacy landfills in a major Australian urban re-development precinct. Sampling locations (n = 13) included sites installed directly in waste material and down-gradient from landfills, some of which exhibited evidence of leachate contamination including elevated concentrations of ammonia-N (≤106 mg/L), bicarbonate (≤1,740 mg/L) and dissolved methane (≤10.4 mg/L). Between one and fourteen PFAS were detected at all sites and PFOS, PFHxS, PFOA and PFBS were detected in all samples. The sum of detected PFAS (∑₁₄PFAS) varied from 26 ng/L at an ambient background site to 5,200 ng/L near a potential industrial point-source. PFHxS had the highest median concentration (34 ng/L; range: 2.6–280 ng/L) followed by PFOS (26 ng/L; range: 1.3–4,800 ng/L), PFHxA (19 ng/L; range: <LOQ – 46 ng/L) and PFOA (12 ng/L; range: 1.7–74 ng/L). Positive correlations between ∑₁₄PFAS, PFOA and other perfluoroalkyl carboxylic acids (PFCAs) (e.g. PFHxA) with typical leachate indicators including ammonia-N and bicarbonate were observed. In contrast, no such correlations were found with perfluoroalkyl sulfonic acids (PFSAs) (e.g., PFOS and PFHxS). In addition, a strong positive linear correlation (R² = 0.69) was found between the proportion of PFOA in the sum of detected perfluorinated alkylated acids (PFOA/∑PFAA) and ammonia-N concentrations in groundwater. This is consistent with previous research showing relatively high PFOA/∑PFAA in municipal landfill leachates, and more conservative behaviour (e.g. less sorption and reactivity) of PFCAs during subsurface transport compared to PFSAs. PFOA/∑PFAA in groundwater may therefore be a useful indicator of municipal landfill-derived PFAA. One site with significantly elevated PFOS and PFHxS concentrations (4,800 and 280 ng/L, respectively) appears to be affected by point-source industrial contamination, as landfill leachate indicators were absent.
Show more [+] Less [-]Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits
2019
Smalling, Kelly L. | Anderson, Chauncey W. | Honeycutt, R Ken | Cozzarelli, Isabelle M. | Preston, Todd | Hossack, Blake R.
Energy production in the Williston Basin, located in the Prairie Pothole Region of central North America, has increased rapidly over the last several decades. Advances in recycling and disposal practices of saline wastewaters (brines) co-produced during energy production have reduced ecological risks, but spills still occur often and legacy practices of releasing brines into the environment caused persistent salinization in many areas. Aside from sodium and chloride, these brines contain elevated concentrations of metals and metalloids (lead, selenium, strontium, antimony and vanadium), ammonium, volatile organic compounds, hydrocarbons, and radionuclides. Amphibians are especially sensitive to chloride and some metals, increasing potential effects in wetlands contaminated by brines. We collected bed sediment and larval amphibians (Ambystoma mavortium, Lithobates pipiens and Pseudacris maculata) from wetlands in Montana and North Dakota representing a range of brine contamination history and severity to determine if contamination was associated with metal concentrations in sediments and if metal accumulation in tissues varied by species. In wetland sediments, brine contamination was positively associated with the concentrations of sodium and strontium, both known to occur in oil and gas wastewater, but negatively correlated with mercury. In amphibian tissues, selenium and vanadium were associated with brine contamination. Metal tissue concentrations were higher in tadpoles that graze compared to predatory salamanders; this suggests frequent contact with the sediments could lead to greater ingestion of metal-laden materials. Although many of these metals may not be directly linked with energy development, the potential additive or synergistic effects of exposure along with elevated chloride from brines could have important consequences for aquatic organisms. To effectively manage amphibian populations in wetlands contaminated by saline wastewaters we need a better understanding of how life history traits, species-specific susceptibilities and the physical-chemical properties of metals co-occurring in wetland sediments interact with other stressors like chloride and wetland drying.
Show more [+] Less [-]Increased risk of carotid atherosclerosis for long-term exposure to indoor coal-burning pollution in rural area, Hebei Province, China
2019
Pang, Yaxian | Zhang, Boyuan | Xing, Dongmei | Shang, Jinmei | Chen, Fengge | Kang, Hui | Chu, Chen | Li, Binghua | Wang, Juan | Zhou, Lixiao | Su, Xuan | Han, Bin | Ning, Jie | Li, Peiyuan | Ma, Shitao | Su, Dong | Zhang, Rong | Niu, Yujie
Smoky coal burning is a predominant manner for heating and cooking in most rural areas, China. Air pollution is associated with the risk of atherosclerosis, however, the link between indoor air pollution induced by smoky coal burning and atherosclerosis is not very clear. Therefore, we designed a cross-sectional study to evaluate the association of long-term exposure to smoky coal burning pollutants with the risk of atherosclerosis. 426 and 326 participants were recruited from Nangong, China and assigned as the coal exposure and control group according to their heating and cooking way, respectively. The indoor air quality (PM2.5, CO, SO₂) was monitored. The association between coal burning exposure and the prevalence of atherosclerosis was evaluated by unconditional logistic regression analysis, adjusted for confounding factors. The inflammatory cytokines mRNAs (IL-8, SAA1, TNF-α, CRP) expression in whole blood were examined by qPCR. People in the coal exposure group had a higher risk of carotid atherosclerosis compared with the control (risk ratio [RR], 1.434; 95% confidence interval [95%CI], 1.063 to 1.934; P = 0.018). The association was stronger in smokers, drinkers and younger (<45 years old) individuals. The elevation of IL-8 (0.24, 95%CI, 0.06–0.58; P < 0.05), CRP (0.37, 95%CI, 0.05–0.70; P < 0.05), TNF-α (0.41, 95%CI, 0.14–0.67; P < 0.01) mRNAs expression in whole blood were positively related to coal exposure. Our results suggested long-term exposure to smoky coal burning emissions could increase the risk of carotid atherosclerosis. The potential mechanism might relate that coal burning emissions exposure induced inflammatory cytokines elevation which had adverse effects on atherosclerotic plaque, and then promoted the development of atherosclerosis.
Show more [+] Less [-]Fish on steroids: Temperature-dependent effects of 17β-trenbolone on predator escape, boldness, and exploratory behaviors
2019
Lagesson, A. | Saaristo, M. | Brodin, T. | Fick, J. | Klaminder, J. | Martin, J.M. | Wong, B.B.M.
Hormonal growth promoters (HGPs), widely used in beef cattle production globally, make their way into the environment as agricultural effluent—with potential impacts on aquatic ecosystems. One HPG of particular concern is 17β-trenbolone, which is persistent in freshwater habitats and can affect the development, morphology and reproductive behaviors of aquatic organisms. Despite this, few studies have investigated impacts of 17β-trenbolone on non-reproductive behaviors linked to growth and survival, like boldness and predator avoidance. None consider the interaction between 17β-trenbolone and other environmental stressors, such as temperature, although environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Accordingly, this study aimed to test the interactive effects of trenbolone and temperature on organismal behavior. To do this, eastern mosquitofish (Gambusia holbrooki) were subjected to an environmentally-relevant concentration of 17β-trenbolone (average measured concentration 3.0 ± 0.2 ng/L) or freshwater (i.e. control) for 21 days under one of two temperatures (20 and 30 °C), after which the predator escape, boldness and exploration behavior of fish were tested. Predator escape behavior was assayed by subjecting fish to a simulated predator strike, while boldness and exploration were assessed in a separate maze experiment. We found that trenbolone exposure increased boldness behavior. Interestingly, some behavioral effects of trenbolone depended on temperature, sex, or both. Specifically, significant effects of trenbolone on male predator escape behavior were only noted at 30 °C, with males becoming less reactive to the simulated threat. Further, in the maze experiment, trenbolone-exposed fish explored the maze faster than control fish, but only at 20 °C. We conclude that field detected concentrations of 17β-trenbolone can impact ecologically important behaviors of fish, and such effects can be temperature dependent. Such findings underscore the importance of considering the potentially interactive effects of other environmental stressors when investigating behavioral effects of environmental contaminants.
Show more [+] Less [-]An adaptive transgenerational effect of warming but not of pesticide exposure determines how a pesticide and warming interact for antipredator behaviour
2019
Tran, Tam T. | Janssens, Lizanne | Dinh, Khuong V. | Stoks, Robby
The impact of pesticides on organisms may strongly depend on temperature. While many species will be exposed to pesticides and warming both in the parental and offspring generations, transgenerational effects of pesticides under warming are still poorly studied, particularly for behaviour. We therefore studied the single and combined effects of exposure to the pesticide chlorpyrifos (CPF) and warming both within and across generations on antipredator behaviour of larvae of the vector mosquito Culex pipiens. Within each generation pesticide exposure and warming reduced the escape diving time, making the larvae more susceptible to predation. Pesticide exposure of the parents did not affect offspring antipredator behaviour. Yet, parental exposure to warming determined how warming and the pesticide interacted in the offspring generation. When parents were reared at 24 °C, warming no longer reduced offspring diving times in the solvent control, suggesting an adaptive transgenerational effect to prepare the offspring to better deal with a higher predation risk under warming. Related to this, the CPF-induced reduction in diving time was stronger at 20 °C than at 24 °C, except in the offspring whose parents had been exposed to 24 °C. This dependency of the widespread interaction between warming and pesticide exposure on an adaptive transgenerational effect of warming is an important finding at the interface of global change ecology and ecotoxicology.
Show more [+] Less [-]