Refine search
Results 561-570 of 6,546
n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats Full text
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Show more [+] Less [-]Impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system Full text
2020
Chang, Jang Sen | Chong, Meng Nan | Poh, Phaik Eong | Ocon, Joey D. | Md Zoqratt, Muhammad Zarul Hanifah | Lee, Sze Mei
This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn²⁺ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value < 0.05), and presented a positive correlation with the concentration of Zn²⁺ ions. Finally, a non-parametric analysis of Friedman test and post-hoc analysis confirmed that the concentration of Zn²⁺ ions being released from ZnO nanoarchitectures is the main contributing factor for both the reduction in COD removal efficiency and bacterial log reduction.
Show more [+] Less [-]Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil Full text
2020
Mandal, Sandip | Pu, Shengyan | He, Lingling | Ma, Hui | Hou, Deyi
Biochar has recently been fascinating for research in many environment areas due to its potential applications. In this research, graphene, and nano zero-valent iron (nZVI) were integrated with biochar and used for copper immobilization in the soil. Initially, the biomass feedstock was pyrolyzed under N₂ atmosphere from 150 to 650 °C and immersed in an aqueous solution containing graphene, and then impregnated with nZVI. Laboratory characterization with different instruments (eg. SEM, TEM, XRD, UV–Vis, VSM, and XPS) showed that graphene sheets and reactive nZVI were loaded on the biochar surface during the development process. The 450 °C was considered as optimum pyrolysis temperature based on the effective surface properties of the obtain biochar material. Boehm titration and functional group analysis confirmed the presence of carboxylic groups, phenolic groups in the corn stack biochar supported graphene oxide/nZVI (CTBC-GO/nZVI). Thermogravimetric analysis showed that nZVI incorporation to biochar surface could improve thermal stability as compared to graphene oxide incorporated biochar and pristine biochar. The material was utilized for copper (Cu) immobilization in the soil and a comparative evaluation was established on the basis of efficiency. The soil experiment showed that the CTBC-GO/nZVI has a superior immobilization efficiency of copper than pristine biochar and GO@BC. The available Cu content decreased by > 65% in CTBC-GO/nZVI amended soil after 14 days. Sequential extraction procedure (SEP) results suggested that CTBC-GO/nZVI promoted the conversion of more accessible Cu into the less accessible and bioavailable forms to reduce the toxicity of Cu. Therefore, CTBC-GO/nZVI composite is a promising and effective amendment for immobilizing Cu in contaminated soils and improving soil properties.This work can put forward a strategy to develop magnetic biochar composites and an application towards toxic heavy metals immobilization in soil.
Show more [+] Less [-]Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey Full text
2020
Varol, Memet
The Keban Dam Reservoir, located on the Euphrates River, is the second largest reservoir of Turkey. Water quality of this reservoir is of great importance because it is widely used for recreation, aquaculture production, fishing, and irrigation. In this study, discriminant analysis, principal component analysis (PCA), factor analysis (FA) and cluster analysis (CA) were conducted to evaluate the seasonal and spatial variations in surface water quality of the reservoir. Also, total phosphorus (TP) content in sediments, water type and trophic status of the reservoir were determined. For this, 19 water quality variables and TP in sediments were monitored seasonally at 11 sampling stations on the reservoir during one year. Hierarchical CA classified 11 stations into three groups, i.e., upstream (moderate polluted), midstream (low polluted) and downstream (clean) regions. PCA/FA allowed to group the variables responsible for variations in water quality, which are mainly related to mineral dissolution (natural), organic matter and nutrients (anthropogenic), and physical parameters (natural). Discriminant analysis (DA) gave better results for both data reduction and spatio-temporal analysis. Stepwise temporal DA identified eight variables: water temperature (WT), chemical oxygen demand (COD), nitrate nitrogen (NO₃–N), soluble reactive phosphorus (SRP), chlorophyll-a (Chl-a), potassium (K⁺), magnesium (Mg²⁺), and calcium (Ca²⁺), which are the most significant variables responsible for temporal variations in water quality of the reservoir, while stepwise spatial DA identified three variables: K⁺, chloride (Cl⁻), and sulphate (SO₄⁻²), which are the most significant variables responsible for spatial variations. According to Ontario sediment-quality guidelines, sediments of the reservoir can be considered as unpolluted in terms of mean TP content. The water type of the reservoir was calcium-bicarbonate. According to trophic state index values based on TP and Chl-a, upstream region (moderate polluted) of the reservoir was in the eutrophic status, whereas other regions were in the mesotrophic status.
Show more [+] Less [-]A two-year field study of using a new material for remediation of cadmium contaminated paddy soil Full text
2020
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Ji, Puhui
Cadmium (Cd) as a highly toxic heavy metal can cause seriously harmful to human health. Rice consumption is a major source of Cd intake by Chinese. Reduce the Cd accumulation by rice is the key for reducing Cd hazard. Therefore, fly ash (FA) was used as raw material in this study, after the process of simplifying hydrothermal synthesis the zeolite (ZE), which was named as low-temperature-alkali roasting, a new intermediate materials (IP) was got. And the three mentioned materials (FA, IP and ZE) were used for a two-year field experiment. The study demonstrated that, application of IP and ZE could promote rice growth, as well as increase soil pH, and improve available Si content. The rice production increased by 36.1% and 29.8% in 2017 by IP and ZE applied, enhanced 35.9% and 31.7% in 2018, respectively. Meanwhile, the bio-available Cd decreased by 26.9% and 26% in 2017, reduced by 22.9% and 28% in 2018, respectively. Generally, the passivators could promote the conversion of acid-exchangeable fraction Cd to reducible fraction Cd. It can be conclude that, IP and ZE have good remediation effect on contaminated soil, and alleviated effects on Cd accumulation by rice, even though no significant difference was detected between IP and ZE. The synthesis process of IP of is simpler than ZE. The impact of IP on contaminated soil needs further exploration.
Show more [+] Less [-]Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation Full text
2020
Luo, Kai | Carmella, Steven G. | Zhao, Yingchun | Tang, Mei Kuen | Hecht, Stephen S.
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF₂α), a biomarker of lipid peroxidation (R² = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Show more [+] Less [-]Evidence-based assessment on environmental mixture using a concentration-dependent transcriptomics approach Full text
2020
Wang, Pingping | Xia, Pu | Wang, Zhihao | Zhang, Xiaowei
Development of new approach methodologies is urgently needed to characterize the likelihood that complex mixtures of chemicals affect water quality. Omics advances in ecotoxicology allow assessment on a broadest coverage of disrupted biological pathway by mixtures. Here the usefulness of transcriptomic analyses for evaluation of combined effects and identification of main effect components are explored. Two artificial mixtures (Mix 1 and Mix 2) were tested by a concentration-dependent reduced zebrafish transcriptome (CRZT) approach and toxicity bioassays using zebrafish embryos. Then, the toxicities and transcriptomic effects of 12 component chemicals on embryos were incorporated into additivity models to characterize the combined effects of chemicals in mixtures and to identify the main bioactive compounds. Mix 1 and Mix 2 displayed similar embryo toxicities (LD₅₀: 6.6 μM and 8.7 μM, respectively), however, Mix 2 elicited broader biological process perturbations and 5-fold higher transcriptome potency (point of departure eliciting a 20% pathway response, PODₚₐₜₕ₂₀) than Mix 1. The predicted mixture toxicities derived from additivity expectations deviated by 2-fold or less from the measured embryo toxicities except for the Jaw defect endpoint; most biological processes deviated by 3-fold or less. Finally, diclofenac (DFC) and propiconazole (PCZ) were identified as the main contributing components (≥80% explanation) to the embryo toxicity and biological process perturbations by Mix 1. While DFC and chlorophene (CLP) explained up to 80% of the embryo toxicities and biological effects of Mix 2 associated with development and Metabolism processes. The CRZT approach provides a powerful tool for assessment of biological pathways perturbed by chemicals in mixtures and for identification of main bioactive compounds.
Show more [+] Less [-]NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain Full text
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R. | Taggart, Mark A. | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain Full text
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R. | Taggart, Mark A. | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
Despite the now well recognised impact of diclofenac on vultures across the Indian subcontinent, this non-steroidal anti-inflammatory drug (NSAID) was registered in 2013 for livestock treatment in Spain, Europe’s main vulture stronghold. We assessed the risk of exposure to diclofenac and nine other NSAIDs in avian scavengers in the Iberian Peninsula (Spain and Portugal) after the onset of diclofenac commercialization. We sampled 228 livestock carcasses from vulture feeding sites, primarily pig (n = 156) and sheep (n = 45). We also sampled tissues of 389 avian scavenger carcasses (306 Eurasian griffon vultures, 15 cinereous vultures, 11 Egyptian vultures, 12 bearded vultures and 45 other facultative scavengers). Samples were analysed by liquid chromatography with mass spectrometry (LCMS). Seven livestock carcasses (3.07%) contained NSAID residues: flunixin (1.75%), ketoprofen, diclofenac and meloxicam (0.44% each). NSAID residues were only detected in sheep (4.44%) and pig (3.21%) carcasses. Fourteen dead avian scavengers (3.60%) had NSAID residues in kidney and liver, specifically flunixin (1.03%) and meloxicam (2.57%). Flunixin was associated with visceral gout and/or kidney damage in three (0.98%) dead Eurasian griffons. To date, diclofenac poisoning has not been observed in Spain and Portugal, however, flunixin would appear to pose an immediate and clear risk. This work supports the need for well managed carrion disposal, alongside appropriate risk labelling on veterinary NSAIDs and other pharmaceuticals potentially toxic to avian scavengers.
Show more [+] Less [-]NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain Full text
2020
Herrero-Villar, Marta | Velarde, Roser | Camarero, Pablo R, | Taggart, Mark A | Bandeira, Victor | Fonseca, Carlos | Marco, Ignasi | Mateo, Rafael
Despite the now well recognised impact of diclofenac on vultures across the Indian subcontinent, this non-steroidal anti-inflammatory drug (NSAID) was registered in 2013 for livestock treatment in Spain, Europe's main vulture stronghold. We assessed the risk of exposure to diclofenac and nine other NSAIDs in avian scavengers in the Iberian Peninsula (Spain and Portugal) after the onset of diclofenac commercialization. We sampled 228 livestock carcasses from vulture feeding sites, primarily pig (n = 156) and sheep (n = 45). We also sampled tissues of 389 avian scavenger carcasses (306 Eurasian griffon vultures, 15 cinereous vultures, 11 Egyptian vultures, 12 bearded vultures and 45 other facultative scavengers). Samples were analysed by liquid chromatography with mass spectrometry (LCMS). Seven livestock carcasses (3.07%) contained NSAID residues: flunixin (1.75%), ketoprofen, diclofenac and meloxicam (0.44% each). NSAID residues were only detected in sheep (4.44%) and pig (3.21%) carcasses. Fourteen dead avian scavengers (3.60%) had NSAID residues in kidney and liver, specifically flunixin (1.03%) and meloxicam (2.57%). Flunixin was associated with visceral gout and/or kidney damage in three (0.98%) dead Eurasian griffons. To date, diclofenac poisoning has not been observed in Spain and Portugal, however, flunixin would appear to pose an immediate and clear risk. This work supports the need for well managed carrion disposal, alongside appropriate risk labelling on veterinary NSAIDs and other pharmaceuticals potentially toxic to avian scavengers. | published
Show more [+] Less [-]Life stage-dependent toxicities of 1-ethyl-3-methylimidazolium bromide on Caenorhabditis elegans Full text
2020
Liu, Hong | Mo, Lingyun | Hou, Meifang | Zhang, Jing
Ionic liquids (ILs) are considered as extracting solvents in soil remediation. However, they can be pollutants themselves, and their own toxicities are of concerns. Notably, organisms were exposed to pollutants at random life stages in actual environmental exposure scenario, which is different from the set-up of one uniform life stage in usual experiment designs. The influence of life stages on ILs toxicities will provide essential information on their actual environmental risks. In the present study, effects of 1-ethyl-3-methylimidazolium bromide ([C₂mim]Br) were measured on C. elegans with egg exposure and adult exposure. In egg exposure, [C₂mim]Br increased the lifespan, stimulated initial reproduction and inhibited the total reproduction. Biochemical indices including oxidative stress, antioxidant responses and oxidative damage were further measured to explore the toxicity mechanisms. Results showed that [C₂mim]Br significantly stimulated O₂⁻· as the oxidative stress and superoxide dismutase (SOD) as the antioxidant defense. In adult exposure, [C₂mim]Br inhibited initial reproduction, total reproduction and lifespan. Biochemical results showed that [C₂mim]Br significantly stimulated H₂O₂ and oxidized glutathione (GSSG). The overall findings demonstrated that [C₂mim]Br caused life stage-dependent toxicities on C. elegans. Future studies are still needed for the detailed mechanisms.
Show more [+] Less [-]Edaphic factors influencing vegetation colonization and encroachment on arsenical gold mine tailings near Sudbury, Ontario Full text
2020
Munford, Kimber E. | Watmough, Shaun A. | Rivest, Maxime | Poulain, Alexandre | Basiliko, Nathan | Mykytczuk, Nadia C.S.
Mine tailings are found worldwide and can have significant impacts on ecosystem and human health. In this study, natural vegetation patterns on arsenical (As) gold (Au) mine tailings located in Sudbury, Ontario were assessed using transects located at the edge of the tailings and on the tailings. Vegetation communities were significantly different between the edge and open tailings areas of the site. Arsenic concentrations in both areas were extremely variable (from 285-17,567 mg/kg) but were not significantly correlated with vegetation diversity at the site. Nutrients (carbon (C), phosphorus (P)) and organic matter concentrations were associated with higher diversity and with the presence of climax vegetation on the tailings, but there were no significant relationships between tailings chemistry and vegetation indices on the edge. Encroachment onto the tailings from the edge occurred in conventional succession patterns, with a clear gradient from grasses (Agrostis gigantea) to trees such as Picea glauca. On the tailings, a nucleation pattern was visible, distinct from conventional succession. Trees and shrubs such as Betula papyrifera and Diervilla lonicera were associated with higher diversity and higher nutrient concentrations in the underlying tailings, whereas grasses such as A. gigantea were not. We concluded that at all areas of the site, vegetation - particularly trees - was facilitating amelioration of the underlying tailings. Despite high concentrations of As, nutrients appeared to have a greater influence than metals on vegetation diversity.
Show more [+] Less [-]