Refine search
Results 561-570 of 6,475
Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure
2020
Zeng, Taotao | Mo, Guanhai | Hu, Qing | Wang, Guohua | Liao, Wei | Xie, Shuibo
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10–50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%–96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Show more [+] Less [-]Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure
2020
Yang, Xiao-Xiao | Tian, Tian-Tian | Qiao, Wei | Tian, Zhe | Yang, Min | Zhang, Yu | Li, Jiu-Yi
The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.
Show more [+] Less [-]Ingestion of plastic litter by the sandy anemone Bunodactis reynaudi
2020
Weideman, Eleanor A. | Munro, Christie | Perold, Vonica | Omardien, Aaniyah | Ryan, Peter G.
Ingestion of anthropogenic litter has been well documented in marine vertebrates, but comparatively little is known about marine invertebrates. We report macrolitter ingestion by the sandy anemone Bunodactis reynaudi at Muizenberg beach in False Bay, South Africa. Monthly surveys from May 2015 to August 2019 collected 491 ingested litter items (9.4 ± 14.9 items·month⁻¹, 39.8 ± 71.5 g·month⁻¹), of which >99% were plastic. The number of ingested items was correlated with the abundance of stranded items and ingestion peaked in autumn when seasonal rains washed more litter into the bay. Most ingested litter was clear (39%), white (16%) and black/purple (15%). Comparison with environmental litter showed selection for flexible plastics, particularly bags/packets and food packaging. Experimental feeding trials found that B. reynaudi selected for pieces of HDPE bag suspended in seawater for 2–20 days, suggesting that biofilms enhance the palatability of flexible plastics. Studies are needed to assess the possible impacts of plastic ingestion on B. reynaudi. While only a small proportion of the population currently ingest litter, ingestion might become more common if environmental litter loads increase. This might negatively affect the anemone’s ability to respond to other environmental changes such as increasing levels of heavy metal pollution.
Show more [+] Less [-]Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia
2020
Čelić, Mira | Škrbić, Biljana D. | Insa, Sara | Živančev, Jelena | Gros, Meritxell | Petrović, M. (Mira)
The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L⁻¹. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L⁻¹ in wastewater and from 0.1 to 37.2 ng L⁻¹ in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L⁻¹. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQₜ) surpassed the threshold of 1 ng E2 L⁻¹ in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQₜ was below 1 ng L⁻¹ in all samples.
Show more [+] Less [-]Effect of the immobilized microcystin-LR-degrading enzyme MlrA on nodularin degradation and its immunotoxicity study
2020
Wu, Xiang | Wu, Hao | Gu, Xiaoxiao | Zhang, Rongfei | Sheng, Qiang | Ye, Jinyun
In freshwater ecosystems with frequent cyanobacterial blooms, the cyanobacteria toxin pollution is becoming increasingly serious. Nodularin (NOD), which has strong biological toxicity, has emerged as a new pollutant and affects the normal growth, development and reproduction of aquatic organisms. However, little information is available regarding this toxin. In this study, a graphene oxide material modified by L-cysteine was synthesized and used to immobilize microcystin-LR (MC-LR)-degrading enzyme (MlrA) to form an immobilized enzyme nanocomposite, CysGO-MlrA. Free-MlrA was used as a control. The efficiency of NOD removal by CysGO-MlrA was investigated. Additionally, the effects of CysGO-MlrA and the NOD degradation product on zebrafish lymphocytes were detected to determine the biological toxicity of these two substances. The results showed the following: (1) There was no significant difference in the degradation efficiency of NOD between CysGO-MlrA and free-MlrA; the degradation rate of both was greater than 80% at 1 h (2) The degradation efficiency of the enzyme could retain greater than 81% of the initial degradation efficiency after the CysGO-MlrA had been reused 7 times. (3) CysGO-MlrA retained greater than 50% of its activity on the 8th day when preserved at 0 °C, while free-MlrA lost 50% of its activity on the 4th day. (4) CysGO-MlrA and the degradation product of NOD showed no obvious cytotoxicity to zebrafish lymphocytes. Therefore, CysGO-MlrA might be used as an efficient and ecologically safe degradation material for NOD.
Show more [+] Less [-]Mercury accumulation in soil from atmospheric deposition in temperate steppe of Inner Mongolia, China
2020
Cheng, Zhenglin | Tang, Yi | Li, Engui | Wu, Qingru | Wang, Long | Liu, Kaiyun | Wang, Shuxiao | Huang, Yongmei | Duan, Lei
Mercury (Hg) is a toxic and persistent pollutant and has long-term impacts on ecological systems and human health. Coal-fired power plants (CFPPs) are the main source of anthropogenic Hg emission, and the emitted atmospheric Hg is deposited to the surrounding environments which causes soil pollution. To assess the effects of atmospheric Hg from CFPPs in China on the temperate steppe, Hg contents in the topsoil and subsoil were analyzed for samples collected from 80 sites in central Inner Mongolia during 2012–2015. The average content of Hg in topsoil and subsoil were 14.9 ± 10.4 μg kg⁻¹ and 8.9 ± 5.8 μg kg⁻¹, respectively. The principal components analysis (PCA) indicated that the soil organic matter content and atmospheric deposition were the main factors determining soil Hg content in Inner Mongolia. We used the power plant impact factor (PPIF) to evaluate the impacts of the surrounding CFPPs. The PPIF results showed the most positive correlation with Hg content in topsoil at more than 400 km distances, indicating that the contribution of the long-range transport of Hg emitted from CFPPs is regional in scale. Considering the potential of Hg accumulation in soil, long-term and regional measurements of soil Hg and stricter emission-limit standards for power plants should be implemented to control soil Hg pollution in China.
Show more [+] Less [-]Light absorption properties and absorption emission factors for indoor biomass burning
2020
Zhang, Lu | Luo, Zhihan | Du, Wei | Li, Gang | Shen, Guofeng | Cheng, Hefa | Tao, Shu
The optical properties of light-absorbing carbonaceous aerosols have caused increasing concerns due to their significant impacts on local and regional climates. In this study, particles from biomass burning in home stoves were collected and evaluated for their optical properties. The absorption Ångström exponent (AAE) values ranged from 1.17 to 2.92 and negatively correlated with the modified combustion efficiency, indicatinging more brown carbon in combustion emissions with relatively low combustion efficiencies. The average contribution of brown carbon to the total aerosol absorption at 370 nm was equally as important as that of black carbon (BC), with the average relative contribution fraction of 50% varying from 10% to 84% for different biomasses. The average value of the mass absorption efficiency (MAE) of BC (MAEBC) at 880 nm was positively correlated with the ratio of organic carbon to elemental carbon, indicating the significant coating effects of organic aerosols. The MAE values of BrC at 370 nm were in the range of 1.1–11.3 m²/g, with an average of 5.1 ± 2.2 m²/g. The estimated absorption emission factors at 370 nm and 880 nm were 3.75 ± 3.45 and 0.84 ± 0.78 m²/kg, respectively. Optical property information of particles emitted from real-world biomass burning are imperative in future modeling studies of biomass burning impacts on climate. The limitation of the relatively small sample size for each subgroup fuel calls for more field- and lab-based emission characterization research.
Show more [+] Less [-]Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations
2020
Liu, Zhiquan | Cai, Mingqi | Wu, Donglei | Yu, Ping | Jiao, Yang | Jiang, Qichen | Zhao, Yunlong
The biological effects of nanoplastics are a growing concern. However, most studies have focused on exposure to high concentrations or short-term exposure. The potential effects of exposure to low environmental nanoplastic concentrations over the long-term and across multiple generations remain unclear. In the present study, Daphnia pulex was exposed over three 21-day generations to a typical environmental nanoplastic concentration (1 μg/L) and the effects were investigated at physiological (growth and reproduction), gene transcription and enzyme activity levels. Chronic exposure did not affect the survival or body length of D. pulex, whereas the growth rate and reproduction were influenced in the F2 generation. Molecular responses indicated that environmental nanoplastic concentrations can modulate the response of antioxidant defenses, vitellogenin synthesis, development, and energy production in the F0-F1 generations, and prolongation resulted in inhibitory effects on antioxidant responses in F2 individuals. Some recovery was observed in the recovery group, but reproduction and stress defenses were significantly induced. Taken together, these results suggest that D. pulex recovery from chronic exposure to nanoplastic may take several generations, and that nanoplastics have potent long-term toxic effects on D. pulex. The findings highlight the importance of multigenerational and chronic biological evaluations to assess risks of emerging pollution.
Show more [+] Less [-]Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms
2020
Kik, Kinga | Bukowska, Bożena | Sicińska, Paulina
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
Show more [+] Less [-]Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia
2020
Adam, Max Gerrit | Chiang, Andrew Wei Jie | Balasubramanian, Rajasekhar
Light absorbing carbonaceous aerosols (LACA) consisting of black carbon (BC) and brown carbon (BrC) have received considerable attention because of their climate and health implications, but their sources, characteristics and fates remain unclear in Southeast Asia (SEA). In this study, we investigated spatio-temporal characteristics of LACA, their radiative properties and potential sources in Singapore under different weather conditions. Hourly BC concentrations, measured from May 2017 to March 2018, ranged from 0.31 μg/m³ to 14.37 μg/m³ with the mean value being 2.44 ± 1.51 μg/m³. High mass concentrations of BC were observed during the south-west monsoon (SWM, 2.60 ± 1.56 μg/m³) while relatively low mass concentrations were recorded during the north-east monsoon (NEM, 1.68 ± 0.96 μg/m³). There was a shift in the Absorption Ångström exponent (AAE) from 1.1 to 1.4 when the origin of LACA changed from fossil fuel (FF) to biomass burning (BB) combustion. This shift is attributed to the presence of secondary BrC in LACA, derived from transboundary BB emissions during the SWM. Lower AAE values were observed when local traffic emissions were dominant during the NEM. This explanation is supported by measurements of water-soluble organic carbon (WSOC) in LACA and the corresponding AAE values determined at 365 nm using a UV–vis spectrophotometer. The AAE values, indicative of the presence of brown carbon (BrC), showed that photochemically aged LACA contribute to an enhancement in the light absorption of aerosols. In addition, spatio-temporal characteristics of BC in the intra-urban environment of Singapore were investigated across diverse outdoor and indoor microenvironments. High variability of BC was evident across these microenvironments. Several air pollution hotspots with elevated BC concentrations were identified. Overall, the results stress a need to control anthropogenic emissions of BC and BrC in order to mitigate near-term climate change impacts and provide health benefits.
Show more [+] Less [-]