Refine search
Results 561-570 of 7,290
Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan Full text
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Show more [+] Less [-]Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM2.5 Full text
2022
Jeong, Cheol-Heon | Yousif, Meguel | Evans, Greg J.
The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM₂.₅ and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM₂.₅ only decreased by 4% relative to the baselines. Major chemical components of PM₂.₅, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM₂.₅ sources were assessed using hourly chemical composition measurements of PM₂.₅. Major regional and secondary PM₂.₅ sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.
Show more [+] Less [-]Phytotoxic effects of plastic pollution in crops: what is the size of the problem? Full text
2022
Hartmann, Gustavo Führ | Ricachenevsky, Felipe Klein | Silveira, Neidiquele Maria | Pita-Barbosa, Alice
Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016–2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.
Show more [+] Less [-]Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice Full text
2022
Jiao, Linshu | Zhang, Liuquan | Zhang, Yongzhu | Wang, Ran | Lu, Baiyi | Liu, Xianjin
Selenium is an essential trace element for humans and obtained from diary diets. The consumption of selenium-rich agricultural food is an efficient way to obtain selenium, but the quality and safety of selenium-rich agro-food are always affected by their associated heavy metals, even poses a potential threaten to human health. In this research, a sampling survey of heavy metals contents in selenium-rich rice was conducted, 182 sets of selenium-rich rice samples were collected from five selenium-rich rice-producing areas of China, and the accumulation of selenium and cadmium were found to be associated in rice and soil. Subsequently, a pot experiment was performed in the greenhouse via treating the soil samples with 12 different concentrations of selenium and heavy metals, and the contents of selenium and cadmium in rice grain were confirmed to be significantly associated. Moreover, transcriptome analysis revealed that the up-regulation of transporter-coding may promote the absorption of selenium and cadmium. The expression of antioxidant-coding genes and cadmium chelator transporter coding-genes was up-regulated to reduce the toxicity of cadmium. Meanwhile, the up-regulation of key genes of the ascorbic acid-glutathione metabolic pathway were responsible for the association between selenium and cadmium in Se-rich rice. Our work suggested the correlation between selenium and cadmium accumulation in selenium-rich rice, clarified their accumulation mechanism, provides a direction for the scientific production of selenium-rich agro-foods.
Show more [+] Less [-]The Xenopus laevis teratogenesis assay for developmental toxicity of phthalate plasticizers and alternatives Full text
2022
Xu, Yang | Jang, Jihyun | Gye, Myung Chan
Contamination of phthalate ester plasticizers threatens the wildlife as well as human health. To evaluate the developmental toxicity of commonly used phthalate esters and emerging alternatives, the frog embryo teratogenesis assay-Xenopus (FETAX) was conducted for dibutyl-phthalate (DBP), benzyl-butyl-phthalate (BBP), dioctyl-terephthalate (DOTP), di(2-propylheptyl)-phthalate (DPHP), diisononyl-phthalate (DINP), diisodecyl-phthalate (DIDP), diethyl hexyl cyclohexane (DEHCH), and diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). The 96-hrs LC₅₀ for DBP, BBP, DOTP, DIDP, DINCH, DINP, DPHP, and DEHCH were 18.3, 20.1, 588.7, 718.0, 837.5, 859.3, 899.0, and 899.0 mg/L, respectively. The 96-hrs EC₅₀ of developmental abnormality of DBP, BBP, DPHP, DOTP, DINP, DEHCH, DINCH, and DIDP were 7.5, 18.2, 645.1, 653.6, 664.4, 745.6, 813.7, and 944.5 mg/L, respectively. The lowest observed effective concentration for embryonic survival, malformation, and growth was DINP, DBP, BBP, DIDP, DPHP, DINCH, DEHCH, and DOTP in increasing order. In tadpoles, DBP, BBP, DEHCH, DINP, and DIDP caused inositol-requiring enzyme 1 or protein kinase R-like endoplasmic reticulum kinase pathway endoplasmic reticulum stress (ERS) in order, and BBP, DBP, DOTP, DPHP, DINP, and DIDP caused long term ERS-related apoptosis or mitochondrial apoptosis in order. Together, in Xenopus embryos, the developmental toxicity and the cellular stress-inducing potential of tested plasticizers were DEHCH, DINCH, DPHP, DIDP, DINP, DOTP, BBP, and DBP in increasing order. In consideration of public as well as environmental health this information would be helpful for industrial choice of phthalate ester plasticizers and their alternatives.
Show more [+] Less [-]Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy Full text
2022
Kar, Susmita | Santra, Bhaskar | Kumar, Sunil | Ghosh, Sourja | Majumdar, Swachchha
Effective immobilization of industrial waste into biochar development could be one of the most promising technologies for solid waste management to achieve circular economy. In this study, post-industrial cotton textile waste (PICTW), a cellulose rich industrial waste, was subjected to slow pyrolysis to develop a surface engineered biochar through phosphoric acid impregnation. Biochar produced at 500 °C designated as PICTWB500 showed a maximum methylene blue number (240 mg g⁻¹) with remarkable specific surface area of 1498 m² g⁻¹. FESEM, FTIR, XRD and Raman spectra analysis were performed to investigate the surface texture and functionalities developed in the biochar. Adsorption efficiency of the biochar was assessed using drimarene red, blue, violet, and black dyes as model dye pollutants in batch mode at different biochar dose, pH and contact time. The maximum monolayer adsorption capacity was obtained in the range 285–325 mg g⁻¹ for different dyes, determined from Langmuir adsorption model. The kinetic behaviour was more favourable with the pseudo second-order model. The recycling ability of PICTWB500 was proven to be effective up to 6th cycle without compromising its adsorption efficiency significantly. This study demonstrated an excellent adsorption capability of the biochar in dye laden real textile effluent and recycling of spent biochar as a precursor of bio compost. Hence, this study established a dual win strategy for waste utilization in textile industry using a closed loop approach with substantial techno-economic feasibility that may have potential applications.
Show more [+] Less [-]Occupational lead exposure on genome-wide DNA methylation and DNA damage Full text
2022
Meng, Yu | Zhou, Mengyu | Wang, Tuanwei | Zhang, Guanghui | Tu, Yuting | Gong, Shiyang | Zhang, Yunxia | Christiani, David C. | Au, William | Liu, Yun | Xia, Zhao-lin
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Show more [+] Less [-]Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms Full text
2022
Saha, Asish | Pal, Subodh Chandra | Chowdhuri, Indrajit | Roy, Paramita | Chakrabortty, Rabin
One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., “RF-particle swarm optimization (PSO)”, “RF-grey wolf optimizer (GWO)” and “RF-grasshopper optimization algorithm (GOA)”, to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.
Show more [+] Less [-]Gestational PCB52 exposure induces hepatotoxicity and intestinal injury by activating inflammation in dam and offspring mice: A maternal and progeny study Full text
2022
Xu, Ling-Ling | Zhang, Qin-Yao | Chen, Yu-Kui | Chen, Li-Jian | Zhang, Kai-Kai | Wang, Qi | Xie, Xiao-Li
Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.
Show more [+] Less [-]Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment Full text
2022
Zong, Yutong | Chen, Han | Malik, Zaffar | Xiao, Qing | Lu, Shenggao
Direct application of contaminated-rice straw (CRS) to soil can cause the secondary pollution in agricultural land because of high content of Cd in rice straw. This study employed biochar or modified biochar technique to reduce the potential pollution risk of Cd in CRS. In the pot experiment, the CRS, straw biochar prepared at 300 °C (B300) and 500 °C (B500), and phosphorus modified biochar pyrolyzed at 300 °C (PB300) and 500 °C (PB500) were added at dosage of 5% into three typical paddy soils. The results showed that CRS and its derived biochar could enhance soil pH, EC, Eh, organic carbon, exchangeable base cations (K⁺, Na⁺, Ca²⁺ and Mg²⁺), and available phosphate. The application of CRS, biochar and phosphorus modified biochar significantly increased the contents of total Cd in soils relative to control soil. Compared to CRS, the biochar application (especially the PB500) decreased the contents of 0.01M CaCl₂-extractable Cd. The application of CRS significantly increased the content of exchangeable Cd fraction (F1), whereas biochar increased residual Cd content (F4). The biochar and phosphorous modified biochar significantly decreased the contents of bioavailable Cd in soils compared to CRS application. The increased soil pH and dissolve organic matter were found to be the main factors in reducing the release of Cd in biochar. The possible mechanisms of biochar in reducing bioavailability of Cd were to significantly increase soil pH, enhance the complexation of Cd ions, and promote the transformation of Cd from easily available to stable (residual) forms. It could conclude that conversion of contaminated rice straw into biochar was an efficient way to minimize Cd availability in soil and reduce the pollution risk of Cd in rice straw.
Show more [+] Less [-]