Refine search
Results 581-590 of 4,013
Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion Full text
2016
Diaz-de-Quijano, Maria | Joly, Daniel | Gilbert, Daniel | Toussaint, Marie-Laure | Franchi, Marielle | Fallot, Jean-Michel | Bernard, Nadine
Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems.
Show more [+] Less [-]Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure in China Full text
2016
Ni, Hong-Gang | Lu, Shao-You | Mo, Ting | Zeng, Hui
Based on the most widely used plastics in China, five plastic wastes were selected for investigation of brominated flame retardant (BFR) emission behaviors during open burning. Considerable variations were observed in the emission factors (EF) of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) from the combustion of different plastic wastes. Distribution of BFR output mass showed that ΣPBDE was emitted mainly by the airborne particle (51%), followed by residual ash (44%) and the gas phase (5.1%); these values for ΣHBCD were 62%, 24%, and 14%, respectively. A lack of mass balance after the burning of the plastic wastes for some congeners (output/input mass ratios>1) suggested that formation and survival exceeded PBDE decomposition during the burns. However, that was not the case for HBCD. A comparison with literature data showed that the open burning of plastic waste is major source of PBDE compared to regulated combustion activities. Even for state-of-the-art waste incinerators equipped with sophisticated complex air pollution control technologies, BFRs are released on a small scale to the environment. According to our estimate, ΣPBDE release to the air and land from municipal solid waste (MSW) incineration plants in China in 2015 were 105 kg/year and 7124 kg/year. These data for ΣHBCD were 25.5 and 71.7 kg/year, respectively. Considering the fact that a growing number of cities in China are switching to incineration as the preferred method for MSW treatment, our estimate is especially important. This study provides the first data on the environmental exposure of BFRs emitted from MSW incineration in China.
Show more [+] Less [-]Physico-chemical properties and biological effects of diesel and biomass particles Full text
2016
Longhin, Eleonora | Gualtieri, M. (Maurizio) | Capasso, Laura | Bengalli, Rossella | Mollerup, Steen | Holme, Jørn A. | Øvrevik, Johan | Casadei, Simone | Di Benedetto, Cristiano | Parenti, Paolo | Camatini, Marina
Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.
Show more [+] Less [-]Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin Full text
2016
Wang, Jiao | Zhou, Ming | Liu, Bao-shuang | Wu, Jian-hui | Peng, Xing | Zhang, Yu-fen | Han, Su-qin | Feng, Yin-chang | Zhu, Tan
To investigate the size distributions of chemical compositions and sources of particulate matter (PM) at ground level and from the urban canopy, a study was conducted on a 255 m meteorological tower in Tianjin from December 2013 to January 2014. Thirteen sets of 8 size-segregated particles were collected with cascade impactor at 10 m and 220 m. Twelve components of particles, including water-soluble inorganic ions and carbonaceous species, were analyzed and used to apportion the sources of PM with positive matrix factorization. Our results indicated that the concentrations, size distributions of chemical compositions and sources of PM at the urban canopy were affected by regional transport due to a stable layer approximately 200 m and higher wind speed at 220 m. The concentrations of PM, Cl− and elemental carbon (EC) in fine particles at 10 m were higher than that at 220 m, while the reverse was true for NO3− and SO42−. The concentrations of Na+, Ca2+, Mg2+, Cl− and EC in coarse particles at 10 m were higher than that at 220 m. The size distributions of major primary species, such as Cl−, Na+, Ca2+, Mg2+ and EC, were similar at two different heights, indicating that there were common and dominant sources. The peaks of SO42−, NH4+, NO3− and organic carbon (OC), which were partly secondary generated species, shifted slightly to the smaller particles at 220 m, indicating that there was a different formation mechanism. Industrial pollution and coal combustion, re-suspended dust and marine salt, traffic emissions and transport, and secondary inorganic aerosols were the major sources of PM at both heights. With the increase in vertical height, the influence of traffic emissions, re-suspended dust and biomass burning on PM weakened, but the characteristics of regional transport from Hebei Province and Beijing gradually become obvious.
Show more [+] Less [-]Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure Full text
2016
Sharma, Brij Mohan | Bharat, Girija K. | Tayal, Shresth | Larssen, Thorjørn | Bečanová, Jitka | Karásková, Pavlína | Whitehead, P. G. | Futter, Martyn N. | Butterfield, Dan | Nizzetto, Luca
Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4–4.7 ng L⁻¹) and PFBS (<MQL – 10.2 ng L⁻¹) among PFCAs and PFSAs, respectively. Prevalence of short-chain PFAS indicates that the effects of PFOA and PFOS substitution are visible in environmental samples from India. The spatial pattern of C5–C7 PFCAs co-varied with that of PFOS suggesting similar emission drivers. PFDA and PFNA had much lower concentrations and covaried with PFOA especially in two hotspots downstream of Kanpur and Patna. PFOS and PFOA emissions to the river varied dramatically along the transect (0.20–190 and 0.03–150 g d⁻¹, respectively). PFOS emission pattern could be explained by the number of urban residents in the subcatchment (rather than total population). Per-capita emissions were lower than in many developed countries. In groundwater, PFBA (<MQL – 9.2 ng L⁻¹) and PFBS (<MQL – 4.9 ng L⁻¹) had the highest concentrations among PFCAs and PFSAs, respectively. Concentrations and trends in groundwater were generally similar to those observed in surface water suggesting the aquifer was contaminated by wastewater receiving river water. Daily PFAS exposure intakes through drinking water were below safety thresholds for oral non-cancer risk in all age groups.
Show more [+] Less [-]Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress Full text
2016
Taiti, Cosimo | Giorni, Elisabetta | Colzi, Ilaria | Pignattelli, Sara | Bazihizina, Nadia | Buccianti, Antonella | Luti, Simone | Pazzagli, Luigia | Mancuso, Stefano | Gonnelli, Cristina
We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations.Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies.
Show more [+] Less [-]Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro Full text
2016
Zou, Yajuan | Jin, Chengyu | Su, Yue | Li, Jiaru | Zhu, Bangshang
When PM2.5 enters human bodies, the water soluble (WS-PM2.5) and insoluble components (WIS-PM2.5) of PM2.5 would interact with cells and cause adverse effects. However, the knowledge about the individual toxicity contribution of these two components is limited. In this study, the physiochemical properties of PM2.5 were well characterized. The toxic effects of WS-PM2.5 and WIS-PM2.5, which include the cell viability, cell membrane damage, reactive oxygen species (ROS) generation and morphological changes, were examined with human lung epithelial A549 cells in vitro. The results indicated that WS-PM2.5 could induce the early response of ROS generation, multiplied mitochondria and multi-lamellar bodies in A549 cells, which might cause cell damage through oxidative stress. Meanwhile, WIS-PM2.5 was predominantly associated with the cell membrane disruption, which might lead to the cell damage through cell-particle interactions. Moreover, the synergistic cytotoxic effects of WS-PM2.5 and WIS-PM2.5 were observed at longer exposure time. These findings demonstrate the different cytotoxicity mechanisms of WS-PM2.5 and WIS-PM2.5, which suggest that not only the size and dosage of PM2.5 but also the solubility of PM2.5 should be taken into consideration when evaluating the toxicity of PM2.5.
Show more [+] Less [-]Distribution and fate of legacy and emerging contaminants along the Adriatic Sea: A comparative study Full text
2016
Combi, Tatiane | Pintado-Herrera, Marina G. | Lara-Martin, Pablo A. | Miserocchi, Stefano | Langone, Leonardo | Guerra, Roberta
The spatial distributions and fates of selected legacy and emerging compounds were investigated and compared in surface sediments sampled along the Adriatic mud-wedge and in deep-sea regions from the southern Adriatic basin. Results indicated that the concentrations of legacy contaminants (PAHs, PCBs and DDTs) and emerging contaminants (tonalide, galaxolide, EHMC, octocrylene, BP3 and NP) ranged from 0.1 to 572 ng g−1 and from <LOD to 40.7 ng g−1, respectively. In general, higher concentrations and estimated burdens were detected in the northern Adriatic, highlighting the importance of the Po River as the major contributor for the inputs of legacy and emerging contaminants to sediments in the Adriatic Sea. Nevertheless, the prevalence of some UV filters and fragrances in the central and southern Adriatic indicates that the proximity to tourist areas and WWTPs discharges seems to affect the distribution of those compounds. The accumulation of contaminants in the deep-sea areas supports the inference that this region may act as an important repository for contaminants within the Adriatic Sea. Estimated annual contaminant accumulation reveals that both, legacy and emerging contaminants accumulate preferentially in the northern Adriatic (40–60% of the total annual contaminant accumulation), where the presence of legacy, and to a lesser extent emerging contaminants, are likely to pose an immediate or long-term hazard to resident biota.
Show more [+] Less [-]Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish Full text
2016
Truong, Lisa | Gonnerman, Greg | Simonich, Michael T. | Tanguay, Robert L.
In 2014, as an attempt to address the Zika health crisis by controlling the mosquito population, Brazil took the unprecedented action of applying a chemical larvicide, pyriproxyfen, to drinking water sources. The World Health Organization has established an acceptable daily intake of pyriproxyfen to be 100 μg per kg of body weight per day, but studies have demonstrated that at elevated doses (>5000 mg/kg), there are adverse effects in mice, rats and dogs. To better understand the potential developmental toxicity of pyriproxyfen, we utilized the embryonic zebrafish. Our results demonstrate that the concentration resulting in 50% of animals presenting adverse morphological effects (EC50), including craniofacial defects, was 5.2 μM for daily renewal exposure, and above this concentration, adverse behavioral effects were also observed in animals that followed a static exposure regimen. Thus, zebrafish data suggest that the developmental toxicity of pyriproxyfen may not be limited to insects.
Show more [+] Less [-]Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling Full text
2016
Li, Nan | He, Qingyang | Tie, Xuexi | Cao, Junji | Liu, Suixin | Wang, Qiyuan | Li, Guohui | Huang, Rujin | Zhang, Qiang
We conducted a year-long WRF-Chem (Weather Research and Forecasting Chemical) model simulation of elemental carbon (EC) aerosol and compared the modeling results to the surface EC measurements in the Guanzhong (GZ) Basin of China. The main goals of this study were to quantify the individual contributions of different EC sources to EC pollution, and to find the major cause of the EC pollution in this region. The EC measurements were simultaneously conducted at 10 urban, rural, and background sites over the GZ Basin from May 2013 to April 2014, and provided a good base against which to evaluate model simulation. The model evaluation showed that the calculated annual mean EC concentration was 5.1 μgC m−3, which was consistent with the observed value of 5.3 μgC m−3. Moreover, the model result also reproduced the magnitude of measured EC in all seasons (regression slope = 0.98–1.03), as well as the spatial and temporal variations (r = 0.55–0.78). We conducted several sensitivity studies to quantify the individual contributions of EC sources to EC pollution. The sensitivity simulations showed that the local and outside sources contributed about 60% and 40% to the annual mean EC concentration, respectively, implying that local sources were the major EC pollution contributors in the GZ Basin. Among the local sources, residential sources contributed the most, followed by industry and transportation sources. A further analysis suggested that a 50% reduction of industry or transportation emissions only caused a 6% decrease in the annual mean EC concentration, while a 50% reduction of residential emissions reduced the winter surface EC concentration by up to 25%. In respect to the serious air pollution problems (including EC pollution) in the GZ Basin, our findings can provide an insightful view on local air pollution control strategies.
Show more [+] Less [-]