Refine search
Results 581-590 of 4,895
Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
2019
Zhao, Ling | Nan, Hongyan | Kan, Yue | Xu, Xiaoyun | Qiu, Hao | Cao, Xinde
Biochar as a porous carbon material could be used for improving soil physical and chemical properties, while insufficient attention has been paid to potential risks induced by infiltration of heavy metals in the runoff water flowing through biochar-amended soil. Four different soil-biochar matrices with same volumes were constructed including soil alone (M1), biochar alone (M2), soil-biochar layering (M3) and soil-biochar mixing (M4). Leaching experiments were conducted with Pb, Cu, and Zn contaminated runoff water. Results showed that biochar amendment greatly improved the water permeation, and the infiltration rates in M2, M3, and M4 were 2.85–23.0 mm min⁻¹, being much higher than those in M1 (1.33–4.05 mm min⁻¹), though the rates decreased as the leaching volumes increased. However, biochar induced more Pb, Cu, and Zn infiltrated through soil-biochar matrix. After 350-L leaching, M1 retained about 95% Pb, 90% Cu, and 36% Zn, while M2 only retained 4.80% Pb, 17.4% Cu, and 4.01% Zn; about 30% Pb, 80% Cu, and 15% Zn were retained in M3 and M4. Notably, Zn was trapped first and then re-leached into the filtrate, which resulted in a much higher effluent Zn than the influent Zn at the later stage. However, the unit weight of biochar showed a higher capacity for retaining heavy metals compared to per unit of soil. Under the dynamic water flow, all benefits and disadvantages induced by biochar were weakened with its physical disintegration. Biochar as soil amendment can enhance plant growth via ameliorating soil structure, while it would pose risks to environment because of large penetration of heavy metals. If biochar was compacted to form a denser physical structure, perhaps more heavy metals could be retained.
Show more [+] Less [-]Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China
2019
Zhou, Li | Liu, Guijian | Shen, Mengchen | Hu, Ruoyu | Sun, Mei | Liu, Yuan
Metals in indoor dust pose potential health risks to humans. Dust deposition on air conditioner filters can represent the resuspended particulate matter in indoor air. However, few studies have examined this until now. This study investigated the total concentrations and different chemical fractionations of Cd, Cr, Mn, Ni, Pb, Sb, V, and Zn in indoor dust from three different functional zones (the Chief District, Commercial District (CmD), and Industrial District) in Hefei. The mean metal concentrations in indoor dust decreased in the following order: Zn > Mn > Pb > Cr > Ni > V > Cd > Sb. Cd, Pb, and Zn mainly existed in the mobile fraction. Cr and V mainly existed in the residual fraction. The enrichment factor and geo-accumulation index values of heavy metals were all ranked in the order of Cd > Zn > Pb > Sb > Ni > Cr > V, and these values in indoor dust were larger than those in outdoor dust. In addition, the enrichment patterns of these elements were similar in the three functional areas. The orders of non-carcinogenic risk (hazard index; HI) for the different functional areas for children were roughly the same, but there were clear differences for adults. In general, all the HIs were less than 1, which were within the internationally recognized safe range. The total carcinogenic risk (TR) was in the order of Cr > Pb > Cd for both children and adults in the three functional zones. The TRs from Cr exposure were not negligible. The TRs were significantly higher in the CmD.
Show more [+] Less [-]Di (2-ethyl hexyl) phthalate (DEHP)-induced spleen toxicity in quail (Coturnix japonica) via disturbing Nrf2-mediated defense response
2019
Yu, Lei | Li, Hui-Xin | Guo, Jian-Ying | Huang, Yue-Qiang | Wang, Hui | Talukder, Milton | Li, Jin-Long
Di(2-ethylhexyl) phthalate (DEHP), as a widely used plasticizer, is reported to have widespread environmental and global health hazards. Trace amounts of phthalates in the environment are sufficient to disrupt ecological balance and affect human health. However, DEHP-induced splenic toxicity remains in an unknown state. Therefore, to explore the mechanism of DEHP-induced splenic toxicity, male quail were employed with 0, 250, 500 and 750 mg/kg body weight DEHP by daily gastric perfusion for 45 days. Notably, splenic corpuscular border and cell gap enlargement were observed in the spleen tissue of DEHP-exposed quail under the histopathological analysis. Furthermore, DEHP induced dysregulation of oxidative stress markers by increasing malondialdehyde (MDA) content and decreasing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities. Low concentration of DEHP (≤250 mg/kg) exposure suppressed nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, while high concentration of DEHP (≥500 mg/kg) exposure activated Nrf2-mediated defense response. DEHP induced splenic oxidative stress via interfering Nrf2 signal pathway and altering the transcription of its downstream genes. In conclusion, this study suggested that DEHP induced splenic toxicity.
Show more [+] Less [-]Insights into long-term effects of amino-functionalized multi-walled carbon nanotubes (MWCNTs-NH2) on the performance, enzymatic activity and microbial community of sequencing batch reactor
2019
Gao, Mengchun | Gao, Feng | Ma, Bingrui | Yu, Naling | She, Zonglian | Zhao, Changkun | Guo, Liang | Zhao, Yangguo | Li, Shanshan | Jin, Chunji
Carbon nanotubes (CNTs) inevitably enter domestic sewage and industrial wastewater with the continuous increase of their production and application field. The potential effect of CNTs on biological wastewater treatment processes has raised wide concerns due to their biotoxicity. In the present study, the performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were evaluated under 148-day exposure of amino-functionalized multi-walled CNTs (MWCNTs-NH₂) at 10 and 30 mg/L. The COD removal efficiency at 10 and 30 mg/L MWCNTs-NH₂ gradually reduced from 91.03% and 90.43% on day to 89.11% and 86.70% on day 148, respectively. The NH₄⁺-N removal efficiency at 10 and 30 mg/L MWCNTs-NH₂ gradually reduced from 98.98% and 98.46% on day 1 to 96.65% and 63.39% on day 148, respectively. Compared to 0 mg/L MWCNTs-NH₂, the oxygen-utilizing rate, ammonia-oxidizing rate, nitrite-oxidizing rate, nitrite-reducing rate and nitrate-reducing rate at 30 mg/L MWCNTs-NH₂ were decreased by 52.35%, 60.58%, 55.12%, 56.56% and 57.42% on day 148, respectively. The microbial reactive oxygen species and lactate dehydrogenase release on day 148 was increased by 59.71% and 55.28% at 30 mg/L MWCNTs-NH₂, respectively. The key microbial enzymatic activity related to nitrogen removal decreased with the increase of operation time under MWCNTs-NH₂ stress. The relative abundances of Nitrosomonas, Nitrosospira, Nitrospira and some denitrifying bacteria at 10 mg/L MWCNTs-NH₂ gradually reduced with an increment in operation time. The changes of nitrogen removal rate, microbial community and enzymatic activity of SBR were related to the time-cumulative nonlinear inhibition effect under long-term exposure.
Show more [+] Less [-]Nutrients and heavy metals mediate the distribution of microbial community in the marine sediments of the Bohai Sea, China
2019
Lu, Meiqing | Luo, Xin | Jiao, Jiu Jimmy | Li, Hailong | Wang, Jerry H. C. | Gao, Jingyan | Zhang, Xiaolang | Xiao, Kai
The Bohai Sea, one of the largest marginal seas in China, is extensively influenced by human and industrial activities. The pollutant loads from anthropogenic activities have induced severe ecological problems. The study investigates the physicochemical characteristics of seawater and sediments in Bohai Bay and Laizhou Bay of the Bohai Sea. The diversity and composition of microbial community in sediments are analyzed by 16S rRNA gene amplicon sequencing. The sequencing results present 16 phyla and 31 classes from the samples. Proteobacteria constituted a dominant phylum, of which the classes of Gamma-, Delta-, and Epsilon-are predominant sub-divisions. Nitrogen, phosphorus, and sulfur cycling related microbes present high abundance in both bays. The metabolism of organic matters is the main factor that influences the distribution of microbial communities in Bohai Bay, while the inflow of Yellow River is the dominant factor that influences the distribution of microbial communities in Laizhou Bay. Sulfur oxidizing process is expected to be positively influenced by heavy metals, while ammonia (NH4+) oxidizing process is prone to be negatively affected by heavy metals in both bays. Microbial communities in the offshore sediments of Laizhou Bay and the majority microbial communities in Bohai Bay sediments are subject to similar predominant controlling factors. This phenomenon is likely ascribed to ocean circulation. The results of this study can provide constructive guidelines on ecosystem management of marginal seas in Bohai and elsewhere.
Show more [+] Less [-]New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics
2019
Li, Xiaona | Qu, Changsheng | Bian, Yongrong | Gu, Chenggang | Jiang, Xin | Song, Yang
Polycyclic aromatic hydrocarbons (PAHs), some of the most widespread organic contaminants, are highly toxic to soil microorganisms. Whether long-term polluted soils can still respond to the fresh input of pollutants is unknown. In this study, the soil enzyme activity, soil microbial community structure and function and microbial metabolism pathways were examined to systematically investigate the responses of soil microorganisms to fresh PAH stress. Microbial activity as determined by soil dehydrogenase and urease activity was inhibited upon microbe exposure to PAH stress. In addition, the soil microbial community and function were obviously shifted under PAH stress. Both microbial diversity and richness were decreased by PAH stress. Rhizobacter, Sphingobium, Mycobacterium, Massilia, Bacillus and Pseudarthrobacter were significantly affected by PAH stress and can be considered important indicators of PAH contamination in agricultural soils. Moreover, the majority of microbial metabolic function predicted to respond to PAH stress were affected adversely. Finally, soil metabolomics further revealed specific inhibition of soil metabolism pathways associated with fatty acids, carbohydrates and amino acids. Therefore, the soil metabolic composition distinctively changed, reflecting a change in the soil metabolism. In summary, fresh contaminant introduction into long-term polluted soils inhibited microbial activity and metabolism, which might profoundly affect the whole soil quality.
Show more [+] Less [-]Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring: Indication for an overlooked risk in maternal transfer?
2019
Xu, Chao | Niu, Lili | Liu, Jinsong | Sun, Xiaohui | Zhang, Chaonan | Ye, Jing | Liu, Weiping
Ecotoxicological studies show the association between pesticide pollution and transgenerational toxicity in aquatic organisms. However, a less considered risk is that many pesticides can be metabolized and transferred to offspring as new toxicants. In this study, we used zebrafish to evaluate the maternal transfer risk of fipronil (FIP), which is a great threat to aquatic organisms with toxic metabolite formation. After 28-day exposure to environmentally relevant concentrations (1.0, 5.0 and 10.0 μg/L) of FIP in adult female zebrafish (F0), the toxicants off-loading and transgenerational toxicity in offspring were studied. High burdens of FIP and its sulfone metabolite were found in both F0 and the embryos (F1), resulting in increased CYP450 activity. The residual levels of the metabolite were higher than those of the parent compound. Chiral analysis further showed a preferential accumulation of S-enantiomer of FIP in both F0 and F1. Maternal exposure to FIP increased the malformation rate and decreased the swim speed in larvae. Additionally, after exposure, the levels of thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), decreased in both generations, particularly in the F1. Gene transcription expression along the hypothalamic-pituitary-thyroid (HPT) axis was also significantly affected. Maternal exposure to FIP increased sulfone metabolite enrichment and cause multiple toxic effects in F1. Findings from this study highlight the key role of biologically active product formation in the maternal transfer of pollutants and associated risk assessment.
Show more [+] Less [-]Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67
2019
Chen, Yu-Han | Qin, Li-Tang | Mo, Ling-Yun | Zhao, Dan-Na | Zeng, Hong-Hu | Liang, Yan-Peng
Aromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.-Q67. The acute toxicities of seven DBPs and their binary mixtures toward V. qinghaiensis sp.-Q67 were determined through microplate toxicity analysis. The toxicities of single DBPs were ranked as follows: 2,5-dibromohydroquinone > 2,4-dibromophenol > 4-bromo-2-chlorophenol ≈ 2,6-dibromo-4-nitrophenol > 2,6-dichloro-4-nitrophenol > 2-bromo-4-chlorophenol > 4-bromophenol. The percentages of synergism (experimental values higher than the predicted concentration addition) on the levels of 50%, 20%, and 10% effective concentrations reached 61%, 41%, and 31%, respectively. These results indicated that the probability of synergism decreased as concentration levels decreased. The synergetic effects of the compounds were dependent on concentration levels and concentration ratios. The proposed quantitative structure–activity relationship model can be used to predict the interactive toxicities exerted by 105 binary DBP mixture rays of 21 DBP mixture systems.
Show more [+] Less [-]Aggregation of oxidized multi-walled carbon nanotubes: Interplay of nanomaterial surface O-functional groups and solution chemistry factors
2019
Xia, Tianjiao | Guo, Xuetao | Lin, Yixuan | Xinbo, | Li, Shunli | Yan, Ni | Zhu, Lingyan
The fast-growing production and application of carbon nanotube (CNT) materials in a variety of industrial products inevitably lead to their release to wastewater and surface water. CNT would experience oxidization in wastewater treatment plant due to the presence of large amount of disinfectants, such as H₂O₂ and O₃, which in turn affects the environmental fates and risks of CNT. In this study, oxidized CNT materials (O-CNTs) were prepared by treating CNT with H₂O₂/UV and O₃ (denoting as H₂O₂-CNT and O₃-CNT, respectively). A variety of characterizations indicated that oxygen containing groups were generated on CNT surface upon the oxidation, and the O/C ratio increased in the order of pristine CNT < H₂O₂-CNT < O₃-CNT. In the presence of Na⁺, K⁺ and Mg²⁺, the O-CNTs displayed better colloidal stability than the pristine CNT, and the stability increased with the oxidation degree (indicated by O/C ratio). This could be explained by the more negative surface charge and stronger hydrophilicity of the O-CNTs. Unexpectedly, in the presence of Ca²⁺, the most oxidized O₃-CNT exhibited the poorest colloidal stability. The abundant carboxyl groups in O₃-CNT provided effective binding sites for cation bridging effect through Ca²⁺ and led to stronger aggregation. Increasing pH was more favorable to disperse CNTs (both O-CNT and pristine CNT) in the presence of Na⁺, but much less effective in inhibiting the aggregation of O₃-CNT in presence of Ca²⁺. This could be explained by the stronger cation bridging effect due to enhanced deprotonation the –COOH groups at higher pH conditions. The calculated Hamaker constants of the CNTs decreased with the oxidation degree, implying that there was lower van der Waals force between the O-CNTs. The Derjaguin–Landau–Verwey–Overbeek (DLVO) calculation confirmed that O-CNTs had to overcome higher energy barrier and thus showed better colloidal stability than the pristine CNT in the presence of Na⁺.
Show more [+] Less [-]Spatial explicit management for the water sustainability of coupled human and natural systems
2019
Zhou, Xi-Yin
Linking water to research on coupled human and natural systems (CHANS) has attracted wide interest as a means of supporting human-natural sustainability. However, most current research does not focus on water environmental properties; instead, it is at the stage of holistic status assessment and measures adjustment from the point of view of the whole study region without revealing the dynamic interaction between human activities and natural processes. This paper establishes an integrated model that combines a System Dynamics model, a Cell Automaton model and a Multiagent Systems model and exploits the potential of the combined model to reveal regions' human-water interaction status during the process of urban evolution, identify the main pollution sources and spatial units, and provide the explicit space-time measurements needed to enhance local human-natural sustainability. The successful application of the integrated model in the case study of Changzhou City, China reveals the following. (1) As the city's development has progressed, the water environment status in some spatial units is still unsatisfactory and may even become more serious, especially in the urban areas of the Urban District and Liyang County. The concentration of Chemical Oxygen Demand (COD) in monitoring section 157 of the Urban District has increased from 36.90 mg/l to 40.84 mg/l. The main source of this increase is the increase in secondary industry. (2) With the application of the spatially explicit measures of the sewage treatment ratio improvement and new sewage plant construction, the water quality in the urban area has significantly improved and now satisfies the water quality standards. The measure of livestock manure utilization enhancement is adopted to improve the spatial units in which livestock is the main pollution source and achieve the goal of water quality improvement. The model can be used to support the sustainable status assessment of human-water interaction and to identify effective measures that can be used to realize human-water sustainability along with social-economic development.
Show more [+] Less [-]