Refine search
Results 591-600 of 5,153
Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou Full text
2018
Li, Kangwei | Chen, Linghong | White, Stephen J. | Zheng, Xianjue | Lv, Biao | Lin, Chao | Bao, Zhier | Wu, Xuecheng | Gao, Xiang | Ying, Fang | Shen, Jiandong | Azzi, Merched | Cen, Kefa
During the 2016 Hangzhou G20 Summit, the chemical composition of submicron particles (PM1) was measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) along with a suite of collocated instruments. The campaign was undertaken between August 5 and September 23, 2016. The impacts of emission controls and meteorological conditions on PM1 chemical composition, diurnal cycles, organic aerosol (OA) source apportionment, size distribution and elemental ratios were characterized in detail. Excluding rainy days, the mean PM1 mass concentration during G20 was 30.3 μg/m³, similar to that observed before G20 (28.6 μg/m³), but much lower than that after G20 (42.7 μg/m³). The aerosol chemistry during the three periods was substantially different. Before G20, high PM1 loading mostly occurred at daytime, with OA accounting for 60.1% of PM1, followed by sulfate (15.6%) and ammonium (9.1%). During G20, the OA fraction decreased from 60.1% to 44.6%, whereas secondary inorganic aerosol (SIA) increased from 31.8% to 49.5%. After G20, SIA dominated high PM1 loading, especially at nighttime. Further analysis showed that the nighttime regional transport might play an unfavorable role in the slight increase of secondary PM1 during G20, while the strict emissions controls were implemented. The OA (O/C = 0.58) during G20 was more aged, 48.7% and 13.7% higher than that before and after G20 respectively. Our study highlighted that the emission controls during G20 were of great success in lowering locally produced aerosol and pollutants, despite of co-existence of nighttime regional transport containing aerosol high in low-volatile organics and sulfate. It was implied that not only are emissions controls on both local and regional scale important, but that the transport of pollutants needs to be sufficiently well accounted for, to ensure the successful implementation of air pollution mitigation campaigns in China.
Show more [+] Less [-]Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants Full text
2018
Hussain, Afzal | Ali, Shafaqat | Rizwan, Muhammad | Zia ur Rehman, Muhammad | Javed, Muhammad Rizwan | Imran, Muhammad | Chatha, Shahzad Ali Shahid | Nazir, Rashid
An experiment was performed to explore the interactive impacts of zinc oxide nanoparticles (ZnO NPs) and cadmium (Cd) on growth, yield, antioxidant enzymes, Cd and zinc (Zn) concentrations in wheat (Triticum aestivum). The ZnO NPs were applied both in Cd-contaminated soil and foliar spray (in separate studies) on wheat at different intervals and plants were harvested after physiological maturity. Results depicted that ZnO NPs enhanced the growth, photosynthesis, and grain yield, whereas Cd and Zn concentrations decreased and increased respectively in wheat shoots, roots and grains. The Cd concentrations in the grains were decreased by 30–77%, and 16–78% with foliar and soil application of NPs as compared to the control, respectively. The ZnO NPs reduced the electrolyte leakage while increased SOD and POD activities in leaves of wheat. It can be concluded that ZnO NPs (levels used in the study) could effectively reduce the toxicity and concentration of Cd in wheat whereas increase the Zn concentration in wheat. Thus, ZnO NPs might be helpful in decreasing Cd and increasing Zn biofortification in cereals which might be effective to reduce the hidden hunger in humans owing the deficiency of Zn in cereals.
Show more [+] Less [-]Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population Full text
2018
Stabile, L. | Buonanno, G. | Avino, P. | Frattolillo, A. | Guerriero, E.
Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments.To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM₁₀ samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk.Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm² h⁻¹) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10⁻⁵): in particular, the risk due to the open fireplace (8.8 × 10⁻³) was non-negligible when compared to the overall lung cancer risk of typical Italian population.
Show more [+] Less [-]Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins Full text
2018
Barrows, A.P.W. | Cathey, S.E. | Petersen, C.W.
Microplastic and microfiber pollution has been documented in all major ocean basins. Microfibers are one of the most common microparticle pollutants along shorelines. Over 9 million tons of fibers are produced annually; 60% are synthetic and ∼25% are non-synthetic. Non-synthetic and semi-synthetic microfibers are infrequently documented and not typically included in marine environment impact analyses, resulting in underestimation of a potentially pervasive and harmful pollutant. We present the most extensive worldwide microparticle distribution dataset using 1-liter grab samples (n = 1393). Our citizen scientist driven study shows a global microparticle average of 11.8 ± 24.0 particles L−1 (mean ± SD), approximately three orders of magnitude higher than global model predictions. Open ocean samples showed consistently higher densities than coastal samples, with the highest concentrations found in the polar oceans (n = 51), confirming previous empirical and theoretical studies. Particles were predominantly microfibers (91%) and 0.1–1.5 mm in length (77%), a smaller size than those captured in the majority of surface studies. Using μFT-IR we determined the material types of 113 pieces; 57% were classified as synthetic, 12% as semi-synthetic, and 31% as non-synthetic. Samples were taken globally, including from coastal environments and understudied ocean regions. Some of these sites are emerging as areas of concentrated floating plastic and anthropogenic debris, influenced by distant waste mismanagement and/or deposition of airborne particles. Incorporation of smaller-sized microfibers in oceanographic models, which has been lacking, will help us to better understand the movement and transformation of synthetic, semi-synthetic and non-synthetic microparticles in regional seas and ocean basins.
Show more [+] Less [-]Development of a high-throughput in vivo screening platform for particulate matter exposures Full text
2018
Roper, Courtney | Simonich, Staci LMassey | Tanguay, Robert L.
Particulate matter (PM) exposure is a public health burden with poorly understood health effect mechanisms and lacking an efficient model to compare the vast diversity of PM exposures. Zebrafish (Danio rerio) are amenable to high-throughput screening (HTS), but few studies have investigated PM toxicity in zebrafish, despite the multitude of advantages. To develop standardized exposure procedures, the urban PM standard reference material (SRM) 1649b was used to systematically determine sample preparation methods, design experimental controls, determine concentration ranges and evaluation procedures. Embryos (n = 32/treatment) were dechorionated and placed into 96-well plates containing SRM1649b (0–200 μg/mL) at 6 h post fertilization (hpf). Developmental toxicity was assessed at 24 and 120 hpf by evaluating morphological changes, embryonic/larval photomotor behavior, and mortality. Differences from blank medium and particle controls were observed for all biological responses measured. Differences due to SRM1649b concentration and preparation method were also observed. Exposure to SRM1649b from DMSO extraction was associated with changes in morphology and mortality and hypoactivity in photomotor responses compared to the DMSO control for the whole particle suspension (76, 68%) and soluble fraction (59, 54%) during the embryonic and larval stages, respectively. Changes in behavioral responses were not observed following exposure to the insoluble fraction of SRM1649b from DMSO extraction. The toxicity bias from PM preparation provided further impetus to select a single HTS exposure method. Based on the biological activity results, the soluble fraction of SRM1649b from DMSO extraction was selected and shown to have concentration dependent cyp1a/GFP expression. This rapid, sensitive and consistently scalable model is a potentially cost-effective vertebrate approach to study the toxicology of PM from diverse locations, and provides a path to identifying the toxic material(s) in these samples, and discover the mechanisms of toxicity.
Show more [+] Less [-]Mediation effect of AhR expression between polycyclic aromatic hydrocarbons exposure and oxidative DNA damage among Chinese occupational workers Full text
2018
Liu, Yanli | Zhang, Hongjie | Zhang, Huitao | Niu, Yingying | Fu, Ye | Nie, Jisheng | Yang, Aimin | Zhao, Jinzhu | Yang, Jin
Polycyclic aromatic hydrocarbons (PAH) are well-known to be carcinogenic and the mechanisms that it contributes to oxidative DNA damage and aryl hydrocarbon receptor (AhR)-dependent induction are also well understood. However, little is known about the associations between PAH exposure, AhR expression, and oxidative DNA damage. We investigated their associations of AhR expression and oxidative DNA damage related to PAH exposure among 310 workers from a coke-oven plant in China. Urine biomarkers of PAH exposure (2-hydroxynaphthalene, 2-NAP; 2-hydroxyfluorene, 2-FLU; 9-hydroxyphenanthren, 9-PHE; and 1-hydroxypyrene, 1-OHP) and a marker of oxidative damage (8-hydroxy- 2′- deoxyguanosine, 8-OHdG) were measured by high performance liquid chromatography. AhR expression in venous blood was measured by reverse transcription -polymerase chain reaction. The results showed that increasing levels of urinary 1-OHP was positively associated with high 8-OHdG (OR (95% CI) was 4.01 (1.41–11.45) for 4th quartile, compared with 1st quartile, P for trend = 0.013). The similar associations were also found between urinary 1-OHP and high-AhR expressions (4th vs. 1st quartile = 3.50, 95% CI: 1.24–9.87, P for trend = 0.029). A significant association between AhR expression and high 8-OHdG was also found (4th vs. 1st quartile = 2.44, 95% CI: 1.05–5.70, P for trend = 0.027). In addition, mediation analysis showed the AhR expression could explain 35.9% of the association of oxidative DNA damage related to PAH exposure. Our findings implicated that the association between PAH exposure and oxidative DNA damage may be mediated by AhR expression among Chinese occupational workers.
Show more [+] Less [-]Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems Full text
2018
Wang, Haibo | Shen, Yi | Hu, Jun | Xing, Xueci | Zhao, Dan
Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.
Show more [+] Less [-]Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China Full text
2018
In the efforts at controlling automobile emissions, it is important to know in what extent air pollutants from on-road vehicles could be truly reduced. In 2014 we conducted tests in a heavily trafficked tunnel in south China to characterize emissions of volatile organic compounds (VOC) from on-road vehicle fleet and compared our results with those obtained in the same tunnel in 2004. Alkanes, aromatics, and alkenes had average emission factors (EFs) of 338, 63, and 42 mg km⁻¹ in 2014 against that of 194, 129, and 160 mg km⁻¹ in 2004, respectively. In 2014, LPG-related propane, n-butane and i-butane were the top three non-methane hydrocarbons (NMHCs) with EFs of 184 ± 21, 53 ± 6 and 31 ± 3 mg km⁻¹; the gasoline evaporation marker i-pentane had an average EF of 17 ± 3 mg km⁻¹; ethylene and propene were the top two alkenes with average EFs of 16 ± 1 and 9.7 ± 0.9 mg km⁻¹, respectively; isoprene had no direct emission from vehicles; toluene showed the highest EF of 11 ± 2 mg km⁻¹ among the aromatics; and acetylene had an average EF of 7 ± 1 mg km⁻¹. While EFs of total NMHCs decreased only 9% from 493 ± 120 mg km⁻¹ in 2004 to 449 ± 40 mg km⁻¹ in 2014, their total ozone formation potential (OFP) decreased by 57% from 2.50 × 10³ mg km⁻¹ in 2004 to 1.10 × 10³ mg km⁻¹ in 2014, and their total secondary organic aerosol formation potential (SOAFP) decreased by 50% from 50 mg km⁻¹ in 2004 to 25 mg km⁻¹ in 2014. The large drop in ozone and SOA formation potentials could be explained by reduced emissions of reactive alkenes and aromatics, due largely to fuel transition from gasoline/diesel to LPG for taxis/buses and upgraded vehicle emission standards.
Show more [+] Less [-]High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children Full text
2018
A previous study observed high blood lead levels (BLL) in preschool children attending 50 day care centers (DCC) in São Paulo, Brazil.To identify whether lead levels found in both homes and DCC environments are associated with high blood lead levels.Children attending 4 DCCs, quoted here as NR, VA, PS and PF, were divided into two groups according to BLL: high exposure (HE: ≥13.9 μg/dL; 97.5 percentile of the 2013 year sample) and low exposure (LE: <5 μg/dL). For in situ lead measurements (lead paint mode: mg/cm² and ROHS mode: μg/g) in the children's households and in the DCC environments, a field portable X-ray-fluorescence analyzer was used. Multiple logistic regressions were performed to control for confounding factors. Odds ratios were adjusted for age, sex, day care center's measured lead, and tobacco.In an NR DCC building, 33.8% of the measurements had lead levels >600 μg/g, whereas such levels were observed in 77.1% of NR playground measurements. In VA DCC, 22% and 23% of the measurements in the building and in the playgrounds had levels higher than 600 μg/g, respectively. The percentage of high lead levels in the children's houses of the LE group was 5.9% (95% CI: 4.3–7.6%) and 13.2 (95% CI: 8.3–18.0%) in the HE group. Moreover, a significant association was found between high BLLs and lead levels found both in households and DCCs (p < 0.001). Most of the high lead measurements were found in tiles and playground equipment.Lead exposure estimated from the DCCs, where children spend about 10 h/day, can be as relevant as their household exposure. Therefore, public authorities should render efforts to provide a rigorous surveillance for lead-free painting supplies and for all objects offered to children.
Show more [+] Less [-]Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake Full text
2018
Chen, Yi | Fang, Jianzhang | Ren, Lu | Fan, Ruifang | Zhang, Jianqing | Liu, Guihua | Zhou, Li | Chen, Dingyan | Yu, Yingxin | Lu, Shaoyou
Organophosphate esters (OPEs) are widely used in household products as flame retardants or plasticizers and have become ubiquitous pollutants in environmental media. However, little is known about OPE metabolites in humans, especially in children. In this study, eight OPE metabolites were measured in 411 urine samples collected from 6 to 14-year-old children in South China. Bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP) and diphenyl phosphate (DPHP) were the dominant OPE metabolites, and their median concentrations were 1.04, 0.15 and 0.28 μg/L, respectively. The levels of urinary OPE metabolites in the present study were much lower than those in participants from other countries, with the exception of BCEP, suggesting widespread exposure to tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) in South China. No significant difference in the concentrations of any of the OPE metabolites was observed between males and females (p > .05). Significant negative correlations were observed between age and BCEP, BCIPP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), di-o-cresyl phosphate (DoCP) and di-p-cresyl phosphate (DpCP) (DCP), or DPHP (p < .05). Pearson correlation coefficients between urinary OPE metabolites indicated multiple sources and OPE exposure pathways in children. The estimated daily intake suggested that children in South China have a relatively high exposure level to TCEP. To the best of our knowledge, this is the first study to report the urinary levels of OPE metabolites in Chinese children.
Show more [+] Less [-]