Refine search
Results 61-70 of 2,512
Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web Full text
2014
Lu, Zhe | Fisk, Aaron T. | Kovacs, Kit M. | Lydersen, Christian | McKinney, Melissa A. | Tomy, Gregg T. | Rosenburg, Bruno | McMeans, Bailey C. | Muir, Derek C.G. | Wong, Charles S.
Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web Full text
2014
Lu, Zhe | Fisk, Aaron T. | Kovacs, Kit M. | Lydersen, Christian | McKinney, Melissa A. | Tomy, Gregg T. | Rosenburg, Bruno | McMeans, Bailey C. | Muir, Derek C.G. | Wong, Charles S.
Polychlorinated biphenyls (PCBs) chiral signatures were measured in Greenland sharks (Somniosus microcephalus) and their potential prey in arctic marine food webs from Canada (Cumberland Sound) and Europe (Svalbard) to assess temporal and spatial variation in PCB contamination at the stereoisomer level. Marine mammals had species-specific enantiomer fractions (EFs), likely due to a combination of in vivo biotransformation and direct trophic transfer. Greenland sharks from Cumberland Sound in 2007–2008 had similar EFs to those sharks collected a decade ago in the same location (PCBs 91, 136 and 149) and also similar to their conspecifics from Svalbard for some PCB congeners (PCBs 95, 136 and 149). However, other PCB EFs in the sharks varied temporally (PCB 91) or spatially (PCB 95), suggesting a possible spatiotemporal variation in their diets, since biotransformation capacity was unlikely to have varied within this species from region to region or over the time frame studied.
Show more [+] Less [-]Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web Full text
Lu, Zhe | Fisk, Aaron T. | Kovacs, Kit M. | Lydersen, Christian | McKinney, Melissa A. | Tomy, Gregg T. | Rosenburg, Bruno | McMeans, Bailey C. | Muir, Derek C.G. | Wong, Charles S.
Polychlorinated biphenyls (PCBs) chiral signatures were measured in Greenland sharks (Somniosus microcephalus) and their potential prey in arctic marine food webs from Canada (Cumberland Sound) and Europe (Svalbard) to assess temporal and spatial variation in PCB contamination at the stereoisomer level. Marine mammals had species-specific enantiomer fractions (EFs), likely due to a combination of in vivo biotransformation and direct trophic transfer. Greenland sharks from Cumberland Sound in 2007-2008 had similar EFs to those sharks collected a decade ago in the same location (PCBs 91, 136 and 149) and also similar to their conspecifics from Svalbard for some PCB congeners (PCBs 95, 136 and 149). However, other PCB EFs in the sharks varied temporally (PCB 91) or spatially (PCB 95), suggesting a possible spatiotemporal variation in their diets, since biotransformation capacity was unlikely to have varied within this species from region to region or over the time frame studied. © 2013 Elsevier Ltd. All rights reserved.
Show more [+] Less [-]Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China Full text
2014
Wu, Jilei | Zhang, Chaosheng | Pei, Lijun | Chen, Gong | Zheng, Xiaoying
The risk of birth defects is generally accredited with genetic factors, environmental causes, but the contribution of environmental factors to birth defects is still inconclusive. With the hypothesis of associations of geochemical features distribution and birth defects risk, we collected birth records and measured the chemical components in soil samples from a high prevalence area of birth defects in Shanxi province, China. The relative risk levels among villages were estimated with conditional spatial autoregressive model and the relationships between the risk levels of the villages and the 15 types of chemical elements concentration in the cropland and woodland soils were explored. The results revealed that the arsenic levels in cropland soil showed a significant association with birth defects occurring risk in this area, which is consistent with existing evidences of arsenic as a teratogen and warrants further investigation on arsenic exposure routine to birth defect occurring risk.
Show more [+] Less [-]Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles Full text
2014
Wang, Xilong | Ma, Enxing | Shen, Xiaofang | Guo, Xiaoying | Zhang, Meng | Zhang, Haiyun | Liu, Ye | Cai, Fei | Tao, Shu | Xing, Baoshan
Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation.
Show more [+] Less [-]Intake estimates of phthalate esters for South Delhi population based on exposure media assessment Full text
2014
Das, Mihir Tanay | Ghosh, Pooja | Thakur, Indu Shekhar
An indirect estimation method was followed to derive exposure levels of fifteen phthalate congeners in urban population of Delhi, India. The exposure media samples were collected from Jawaharlal Nehru University (JNU) campus and Okhla industrial area. GC–MS analysis of the samples indicated di(2-ethylhexyl) phthalate (DEHP) to be the most abundant congener and its estimated total daily intake level reached upto 70 μg kg−1 d−1. Out of the studied congeners, intake doses for di-n-butyl phthalate (DnBP) and DEHP, reached levels near or above the established exposure limit. In JNU, DEHP, dimethyl phthalate (DMP) and butyl benzyl phthalate (BBP) had 69% share in combined daily intake of Σ15 phthalates (CDI15); whereas, in Okhla, DEHP, diethyl phthalate (DEP), diisobutyl phthalate (DIBP), DnBP and DMP shared 64% of the CDI15. Food was found to be the major source of exposure contributing 67% and 74% of the estimated CDI15 at JNU and Okhla respectively.
Show more [+] Less [-]Exploitation of deep-sea resources: The urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
2014
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M.V.M.
Exploitation of deep-sea resources: The urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
2014
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M.V.M.
The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor – high hydrostatic pressure.
Show more [+] Less [-]Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms Full text
2014 | 1000
Mestre, Nélia C. | Calado, Ricardo | Soares, Amadeu M. V. M.
The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.
Show more [+] Less [-]Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development Full text
2014
Pelak, Adam J. | Sharma, Shikha
Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry.
Show more [+] Less [-]Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane Full text
2014
Chakraborty, Somsubhra | Weindorf, David C. | Li, Bin | Ali, Md Nasim | Majumdar, K. | Ray, D.P.
This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r2 = 0.87, RMSE = 0.580 log10 mg kg−1, and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r2 = 0.65 and RMSE 0.261 log10 mg kg−1) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane.
Show more [+] Less [-]Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target Full text
2014
Hanaoka, Tatsuya | Akashi, Osamu | Fujiwara, Kazuya | Motoki, Yuko | Hibino, Go
This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60–80% reductions in 2050 from the reference scenario while achieving the 2 °C target.
Show more [+] Less [-]Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater Full text
2014
Mallevre, Florian | Fernandes, Teresa F. | Aspray, Thomas J.
Bacteria based ecotoxicology assessment of manufactured nanoparticles is largely restricted to Escherichia coli bioreporters in laboratory media. Here, toxicity effects of model OECD nanoparticles (Ag NM-300K, ZnO NM-110 and TiO2 NM-104) were assessed using the switch-off luminescent Pseudomonas putida BS566::luxCDABE bioreporter in Luria Bertani (LB) medium and artificial wastewater (AW). IC50 values ∼4 mg L−1, 100 mg L−1 and >200 mg L−1 at 1 h were observed in LB for Ag NM-300K, ZnO NM-110 and TiO2 NM-104, respectively. Similar results were obtained in AW for Ag NM-300K (IC50 ∼5 mg L−1) and TiO2 NM-104 (IC50 >200 mg L−1) whereas ZnO NM-110 was significantly higher (IC50 >200 mg L−1). Lower ZnO NM-110 toxicity in AW compared to LB was associated with differences in agglomeration status and dissolution rate. This work demonstrates the importance of nanoecotoxicological studies in environmentally relevant matrices.
Show more [+] Less [-]Long-term behaviour of 137Cs in spruce bark in coniferous forests in the Czech Republic Full text
2014
Rulík, Petr | Pilátová, Helena | Suchara, Ivan | Sucharová, Julie
Activity concentrations of 137Cs were detected in more than 400 outer spruce bark samples collected at sites variably affected by Chernobyl fallout across the Czech Republic in 1995 and 2010. The temporal changes in the 137Cs activities were found. The mean effective half-life (TEF) for 137Cs in spruce bark was 9.6 years, and the mean environmental half-life (TE) was 14 years. The effective half-lives were significantly higher in areas with higher long-term annual precipitation sums. Coefficient a in linear regression y = ax + b of half-lives on precipitation sums was 0.015 y mm−1 for TEF and 0.036 y mm−1 for TE. The aggregated transfer factor of 137Cs from soil to bark was determined and the pre-Chernobyl bark contamination related to year 2010 was estimated.
Show more [+] Less [-]