Refine search
Results 601-610 of 4,935
Tools and constraints in monitoring interactions between marine litter and megafauna: Insights from case studies around the world Full text
2019
Claro, F | Fossi, Mc | Ioakeimidis, C | Baini, M | Lusher, Al | Mc Fee, W | Mcintosh, Rr | Pelmatti, T | Sorce, M | Galgani, Francois | Hardesky, Bd
Adverse impacts of marine litter is documented on >1400 species, including marine megafauna (fish, birds, sea turtles and mammals). The primary impacts include ingestion and entanglement, and there is increasing concern about chemical contamination via ingestion. Numerous survey approaches and monitoring programs have been developed and implemented around the world. They may aim to provide data about parameters such as species distribution and interactions with anthropogenic activities. During the Sixth International Marine Debris Conference, a session was dedicated to the tools and constraints in monitoring interactions between litter and megafauna. In the present paper, we summarize 7 case studies which discuss entanglement and ingestion including macro- and micro-debris in several taxa and across multiple geographic regions. We then discusses the importance of tools and standardizing methods for assessment and management purposes, in the context of international environmental policies and marine litter strategies.
Show more [+] Less [-]Polystyrene microbeads modulate the energy metabolism of the marine diatom Chaetoceros neogracile Full text
2019
Seoane, Marta | González-fernández, Carmen | Soudant, Philippe | Huvet, Arnaud | Esperanza, Marta | Cid, Ángeles | Paul-pont, Ika
Due to the growing concern about the presence of microplastics (MP) in the environment, the number of studies evaluating the toxicity of these small persistent particles on different marine species has increased in recent years. Few studies have addressed their impact on marine phytoplankton, a subject of great concern since they are primary producers of the aquatic food web. The aim of this study is to unravel the cytotoxicity of 2.5 μg mL−1 unlabelled amino-modified polystyrene beads of different sizes (0.5 and 2 μm) on the marine diatom Chaetoceros neogracile. In addition to traditional growth and photosynthesis endpoints, several physiological and biochemical parameters were monitored every 24 h in C. neogracile cells by flow cytometry during their exponential growth (72 h). Dynamic Light Scattering measurements revealed the strong aggregation and the negative charge of the beads assayed in the culture medium, which seemed to minimize particle interaction with cells and potentially associated impacts. Indeed, MP were not attached to the microalgal cell wall, as evidenced by scanning electron micrographs. Cell growth, morphology, photosynthesis, reactive oxygen species levels and membrane potential remained unaltered. However, exposure to MP significantly decreased the cellular esterase activity and the neutral lipid content. Microalgal oil bodies could serve as an energy source for maintaining a healthy cellular status. Thus, MP-exposed cells modulate their energy metabolism to properly acclimate to the stress conditions.
Show more [+] Less [-]Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes Full text
2019
Du, Xinzhong | Zhang, Xuesong | Mukundan, Rajith | Hoàng, Linh | Owens, Emmet M.
Dissolved organic carbon (DOC) is not only a critical component of global and regional carbon budgets, but also an important precursor for carcinogenic disinfection byproducts (DBP) generated during drinking water disinfection process. The lack of process based watershed scale model for carbon cycling has been a limiting factor impeding effective watershed management to control DOC fluxes to source waters. Here, we integrated terrestrial and aquatic carbon processes into the widely tested Soil and Water Assessment Tool (SWAT) watershed model to enable watershed-scale DOC modeling (referred to as SWAT-DOC hereafter). The modifications to SWAT mainly fall into two groups: (1) DOC production in soils and its transport to aquatic environment by different hydrologic processes, and (2) riverine transformation of DOC and their interactions with particular organic carbon (POC), inorganic carbon and algae (floating and bottom). We tested the new SWAT-DOC model in the Cannonsville watershed, which is part of the New York City (NYC) water supply system, using long-term DOC load data (from 1998 to 2012) derived from 1399 DOC samplings. The calibration and verification results indicate that SWAT-DOC achieved satisfactory performance for both streamflow and DOC at daily and monthly temporal scales. The parameter sensitivity analysis indicates that DOC loads in the Cannonsville watershed are controlled by the DOC production in soils and its transport in both terrestrial and aquatic environments. Further model uncertainty analysis indicates high uncertainties associated with peak DOC loads, which are attributed to underestimation of high streamflows. Therefore, future efforts to enhance SWAT-DOC to better represent runoff generation processes hold promise to further improve DOC load simulation. Overall, the wide use of SWAT and the satisfactory performance of SWAT-DOC make it a useful tool for DOC modeling and mitigation at the watershed scale.
Show more [+] Less [-]Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution Full text
2019
Cunha, César | Faria, Marisa | Nogueira, Natacha | Ferreira, Artur | Cordeiro, Nereida
Microalgae can excrete exopolymer substances (EPS) with a potential to form hetero-aggregates with microplastic particles. In this work, two freshwater (Microcystis panniformis and Scenedesmus sp.) and two marine (Tetraselmis sp. and Gloeocapsa sp.) EPS producing microalgae were exposed to different microplastics. In this study, the influence of the microplastic particles type, size and density in the production of EPS and hetero-aggregates potential was studied. Most microalgae contaminated with microplastics displayed a cell abundance decrease (of up to 42%) in the cultures. The results showed that the formed aggregates were composed of microalgae and EPS (homo-aggregates) or a combination of microalgae, EPS and microplastics (hetero-aggregates). The hetero-aggregation was dependent on the size and yield production of EPS, which was species specific. Microcystis panniformis and Scenedesmus sp. exhibited small EPS, with a higher propension to disaggregate, and consequently lower capabilities to aggregate microplastics. Tetraselmis sp. displayed a higher ability to aggregate both low and high-density microplastics, being partially limited by the size of the microplastics. Gloeocapsa sp. had an outstanding EPS production and presented excellent microplastic aggregation capabilities (adhered onto the surface and also incorporated into the EPS). The results highlight the potential of microalgae to produce EPS and flocculate microplastics, contributing to their vertical transport and consequent deposition. Thus, this work shows the potential of microalgae as biocompatible solutions to water microplastics treatment.
Show more [+] Less [-]Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China Full text
2019
Wang, Chunmiao | Yu, Jianwei | Guo, Qingyuan | Sun, Daolin | Su, Ming | An, Wei | Zhang, Yu | Yang, Min
Swampy/septic odors are one of the most important odor types in drinking water. However, few studies have specifically focused on it compared to the extensive reported musty/earthy odor problems, even though the former is much more offensive. In this study, an investigation covering the odor characteristics, algal distribution and possible odorants contributing to swampy/septic odor, including dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), diisopropyl sulfide (DIPS), dipropyl sulfide (DPS), dibutyl sulfide (DBS), 2-methylisoborneol (2-MIB) and geosmin (GSM), was performed in source and finished water of 56 drinking water treatment plants (DWTPs) in 31 cities across China. While the musty/earthy and swampy/septic odors were dominant odor descriptors, the river source water exhibited a higher proportion of swampy/septic odor (38.5%) compared to much higher detection rate of musty/earthy odor (50.0%) in the lake/reservoir source water. The occurrence of swampy/septic odor, which was much easier to remove by conventional drinking water treatment processes compared to musty/earthy odors, was decreased by 62.9% and 46.3% in river and lake/reservoir source water respectively. Statistical analysis showed that thioethers might be responsible for the swampy/septic odor in source water (R2 = 0.75, p < 0.05). Specifically, two thioethers, DMDS and DMTS were detected, and other thioethers were not found in all water samples. DMDS was predominant with a maximum odor activity value (OAV) of 2.0 in source water and 1.3 in finished water. The distribution of the thioethers exhibited a marked regional characteristics with higher concentrations being detected in the east and south parts of China. The high concentrations of thioethers in lake/reservoir source water samples could be partly interpreted as the bloom of the cyanobacteria. This study provides basic information for swampy/septic odor occurrence in drinking water and will be helpful for further water quality management in water industry in China.
Show more [+] Less [-]Microplastic pollution in the rivers of the Tibet Plateau Full text
2019
Jiang, Changbo | Yin, Lingshi | Li, Zhiwei | Wen, Xiaofeng | Luo, Xin | Hu, Shuping | Yang, Hanyuan | Long, Yuannan | Deng, Bin | Huang, Lingzhi | Liu, Yizhuang
The Tibet Plateau, the so-called Third Pole of the world, is home to the headstreams of many great rivers. The levels of microplastic pollution in those rivers, however, are unknown. In this study, surface water and sediment samples were collected from six sampling sites along five different rivers. The surface water and sediment samples were collected with a large flow sampler and a stainless steel shovel, respectively. The abundance of microplastics ranged from 483 to 967 items/m3 in the surface water and from 50 to 195 items/kg in the sediment. A large amount of small, fibrous, transparent microplastics were found in this study. Five types of microplastics with different chemical compositions were identified using micro-Raman spectroscopy: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). These results demonstrate that rivers in the Tibet Plateau have been contaminated by microplastics, not only in developed areas with intense human activity but also in remote areas, where microplastic pollution requires further attention.
Show more [+] Less [-]The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs Full text
2019
Trần, Thị Kim Anh | Yu, Richard Man Kit | Islam, Rafiquel | Nguyen, Thi Hong Tham | Bui, Thi Lien Ha | Kong, Richard Yuen Chong | O'Connor, Wayne A. | Leusch, Frederic D.L. | Andrew-Priestley, Megan | MacFarlane, Geoff R.
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Show more [+] Less [-]Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate Full text
2019
Swart, Elmer | de Boer, Tjalf E. | Chen, Guangquan | Vooijs, Riet | van Gestel, Cornelis A.M. | Straalen, N. M. van | Roelofs, Dick
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC₅₀ for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Show more [+] Less [-]Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits Full text
2019
Rusinowski, S. | Krzyżak, J. | Sitko, K. | Kalaji, H.M. | Jensen, E. | Pogrzeba, M.
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha−1) and S. pectinata (12.6 ± 1.2 t d.m. ha−1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha−1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Show more [+] Less [-]Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil Full text
2019
Cheng, Jie | Xue, Lili | Zhu, Min | Feng, Jiayin | Shen-Tu, Jue | Xu, Jianming | Brookes, Philip C. | Tang, Caixian | He, Yan
An anaerobic incubation was launched with varying nitrate (1, 5, 10 and 20 mM exogenous NaNO₃) and molybdate (20 mM Na₂MoO₄, a sulfate-reducing inhibitor) additions to investigate the characteristics of PCP dechlorination, as well as the reduction of natural co-occurring electron acceptors, including NO₃⁻, Fe(III) and SO₄²⁻, and the responses of microbial community structures under a unique reductive mangrove soil. Regardless of exogenous addition, nitrate was rapidly eliminated in the first 12 days. The reduction process of Fe(III) was inhibited, while that of SO₄²⁻ reduction depended on addition concentration as compared to the control. PCP was mainly degraded from orth-position, forming the only intermediate 2,3,4,5-TeCP by anaerobic microbes, with the highest PCP removal rate of average 21.9% achieved in 1 and 5 mM NaNO₃ as well as 20 mM Na₂MoO₄ treatments and the lowest of 7.5% in 20 mM NaNO₃ treatment. The effects of nitrate on PCP dechlorination depended on addition concentration, while molybdate promoted PCP attenuation significantly. Analyses of the Illumina sequencing data and the relative abundance of dominant microorganisms indicated that the core functional groups regulated PCP removal at genera level likely included Bacillus, Pesudomonas, Dethiobacter, Desulfoporosinus and Desulfovbrio in the nitrate treatments; while that was likely Sedimentibacter and Geosporobacter_Thermotalea in the molybdate treatment. Nitrate supplement but not over supplement, or addition of molybdate are suggested as alternative strategies for better remediation in the nitrate-deficient and sulfur-accumulated soil ecosystem contaminated by PCP, through regulating the growth of core functional groups and thereby coordinating the interaction between dechlorination and its coupled soil redox processes due to shifts of more available electrons to dechlorination. Our results broadened the knowledge regarding microbial PCP degradation and their interactions with natural soil redox processes under anaerobic soil ecosystems.
Show more [+] Less [-]