Refine search
Results 611-620 of 3,991
Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin
2016
Wang, Huaxin | Jiao, Ruyuan | Wang, Fang | Zhang, Lu | Yan, Weijin
Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO2 using high-performance size-exclusion chromatography (HPSEC) with UV254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO2. The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1–2.5 kDa); intermediate MW (IMW, 2.5–3.5 kDa); high MW (HMW, 3.5–6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMWp) was particularly high in wetlands. We found that pCO2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMWp. These data improve our understanding of the MW of bioavailable DOC and its conversion to CO2. The present results demonstrate that both the content and characteristics of DOC significantly affect pCO2. pCO2 and DOC must be studied further to help understanding the role of the wetland on the regional CO2 budget.
Show more [+] Less [-]Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution
2016
Hüffer, Thorsten | Hofmann, Thilo
The presence of microscale polymer particles (i.e., microplastics) in the environment has become a major concern in recent years. Sorption of organic compounds by microplastics may affect the phase distribution within both sediments and aqueous phases. To investigate this process, isotherms were determined for the sorption of seven aliphatic and aromatic organic probe sorbates by four polymers with different physico-chemical properties. Sorption increased in the order polyamide < polyethylene < polyvinylchloride < polystyrene. This order does not reflect the particle sizes of the investigated microplastics within the aqueous dispersions, indicating the influence of additional factors (e.g., π-π-interactions) on the sorption of aromatic compounds by polystyrene. Linear isotherms by polyethylene suggested that sorbate uptake was due to absorption into the bulk polymer. In contrast, non-linear isotherms for sorption by PS, PA, and PVC suggest a predominance of adsorption onto the polymer surface, which is supported by the best fit of these isotherms using the Polanyi-Manes model. A strong relationship between the sorption coefficients of the microplastics and the hydrophobicity of the sorbates suggests that hydrophobic interactions are of major importance.
Show more [+] Less [-]Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin
2016
Larese Filon, Francesca | Crosera, Matteo | Mauro, Marcella | Baracchini, Elena | Bovenzi, Massimo | Montini, Tiziano | Fornasiero, Paolo | Adami, Gianpiero
The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm−2 of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm−2 and 1.06 ± 0.44 μg cm−2 in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm−2 h−1 and 0.057 ± 0.030 μg cm−2 h−1 and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively.This study indicates that Pd can penetrate human skin.
Show more [+] Less [-]Degradation and sorption of the fungicide tebuconazole in soils from golf greens
2016
Badawi, Nora | Rosenbom, Annette E. | Jensen, Anne M.D. | Sørensen, Sebastian R.
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines.
Show more [+] Less [-]The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil
2016
Zhu, Xuejiao | Li, Weila | Zhan, Lu | Huang, Minsheng | Zhang, Qiuzhuo | Achal, Varenyam
Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg−1. The soluble-exchangeable fraction was reduced to 38 mg kg−1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni2+ with an ion radius close to Ca2+ was incorporated into the CaCO3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil.
Show more [+] Less [-]Suspension stability and aggregation of multi-walled carbon nanotubes as affected by dissolved organic matters extracted from agricultural wastes
2016
Li, Helian | Qiu, Yanhua | Wang, Xiaonuan | Liu, Wenhao | Chen, Guangcai | Ma, Yibing | Xing, Baoshan
Dissolved organic matters (DOMs) extracted from wheat straw (SDOM) and cow manure (MDOM) were used to investigate their effects on the suspension stability and aggregation of multi-walled carbon nanotubes (MWCNTs). Two types of DOM can effectively disperse and stabilize the MWCNTs. At initial MWCNT concentration of 500 mg/L, suspended MWCNT concentration ranged from 8.0 to 17.9 mg/L as DOM were varied from 50 to 200 mg/L dissolved organic carbon (DOC). The critical coagulation concentration (CCC) values were estimated to be 41.4 mM NaCl and 5.3 mM CaCl2 in the absence of DOM. The presence of SDOM and MDOM significantly retarded the aggregation rate of MWCNTs. The CCC values increased to 120 mM NaCl and 14.8 mM CaCl2 at SDOM concentration of 20 mg/L DOC. Due to its higher aromaticity and molecular weight, MDOM showed higher ability to stabilize MWCNTs, with CCC values of 201 mM and 15.8 mM at 20 mg/L DOC. These findings revealed that DOMs originated from agricultural wastes will have great impact on the dispersion and stabilization of MWCNTs, thus their fate in the aquatic environment.
Show more [+] Less [-]Occurrence and levels of polybrominated diphenyl ethers in surface sediments from the Yellow River Estuary, China
2016
Yuan, Zijiao | Liu, Guijian | Lam, Michael Hon Wah | Liu, Houqi | Da, Chunnian
A total of 21 surface sediments collected from the Yellow River Estuary, China were analyzed for 40 kinds of polybrominated diphenyl ethers (PBDEs) using gas chromatography-mass spectrometry (GC–MS). Their levels, spatial distribution, congener profiles and possible sources were investigated. Only ten congeners were detected in the sediments. The total concentrations of the lower brominated BDEs (∑PBDEslow, PBDEs excluding BDE 209) and BDE 209 ranged from 0.482 ng/g to 1.07 ng/g and 1.16–5.40 ng/g, with an average value of 0.690 and 2.79 ng/g, respectively, which were both at the low end of the global contamination level. The congener profiles were dominated by BDE 209, with the average value accounting for 79.2% of the total PBDEs in the sediment samples. Among the nine lower brominated BDE congeners, BDE 47, 99 and 183 had high abundances. Although the commercial Penta/Octa-BDE products have been banned in most countries, the residual commercial Penta/Octa/Deca-BDE products and the debromination of highly brominated BDE compounds such as BDE 209 were still found to be the possible sources for the trace level of PBDEs in the present study area. In spite of the gradual removal of the commercial PBDEs in the world, the present research results further suggested that scientific attention should not be reduced on the issue of environmental contamination caused by these outdated chemical compounds.
Show more [+] Less [-]Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites
2016
Boriová, Katarína | Urík, Martin | Bujdoš, Marek | Pifková, Ivana | Matúš, Peter
Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger’s exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L−1, respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger.
Show more [+] Less [-]Oil spills and their impacts on sand beach invertebrate communities: A literature review
2016
Bejarano, Adriana C. | Michel, Jacqueline
Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided.
Show more [+] Less [-]Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter – Exploratory study
2016
Viippola, Viljami | Rantalainen, Anna-Lea | Yli-Pelkonen, Vesa | Tervo, Peatta | Setälä, Heikki
While the potential of plants to uptake polycyclic aromatic hydrocarbons (PAHs) is widely acknowledged, empirical evidence of the effects of this process on local atmospheric PAH concentrations and human health is tenuous. We measured gaseous PAH concentrations using passive samplers in urban tree-covered areas and adjacent open, treeless areas in a near-road environment in Finland to gain information on the ability of urban vegetation to improve air quality. The ability of urban, mostly deciduous, vegetation to affect PAHs was season dependent: during summer, concentrations were significantly higher in tree-covered areas, while in the fall, concentrations in open areas exceeded those in tree-covered areas. During winter, concentrations in tree-covered areas were either lower or did not differ from those in open areas. Results of this study imply that the commonly believed notion that trees unequivocally improve air quality does not apply to PAHs studied here.
Show more [+] Less [-]