Refine search
Results 611-620 of 5,153
Dissimilar effects of two El Niño types on PM2.5 concentrations in East Asia Full text
2018
Jeong, Jaein I. | Park, Rokjin J. | Yeh, Sang-Wook
We investigate the effects of natural variability of meteorological fields on surface PM₂.₅ concentration changes in East Asia during El Niño periods for the past three decades (1980–2014) through GEOS-Chem 3D global chemical transport model simulations. First, our evaluation of the model with anthropogenic emissions for 2006 and a comparison against observations show that the simulated results accurately reproduced the observed spatial distribution of annual mean aerosol concentrations for 2006–2007 including inorganic (sulfate, ammonium, and nitrate) and carbonaceous (organic and black carbon) aerosols in the surface air. Based on the Oceanic Niño Index, the assimilated meteorological data used in the model simulations indicate that 10 El Niño events occurred for the past three decades (1980–2014). We further classified the 10 El Niño events into 6 central Pacific El Niño (C-type) and 4 eastern Pacific El Niño (E-type) to examine the different roles of two El Niño types in determining seasonal surface PM₂.₅ concentrations in East Asia. We find opposite impacts on the seasonal surface PM₂.₅ concentrations depending on two El Niño types, such that the surface PM₂.₅ concentrations during the E-type period are higher than the climatological mean value, especially in northern East Asia. The peak increase of as much as 20% occurs in winter and is sustained until the following spring. However, the C-type period shows a decrease in seasonal PM₂.₅ concentrations in northern East Asia compare to the climatological mean, and the peak decrease of as much as 10% occurs in the following spring. The different of two El Niño types also have dissimilar impacts on surface PM₂.₅ concentrations in southeastern China. Natural variation of aerosol concentrations driven by the different of two El Niño types appears to be significant and would be an important factor in determining the inter-annual variation of aerosol concentrations in East Asia.
Show more [+] Less [-]Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins Full text
2018
Wang, Xiao-Han | Wang, Qi | Nie, Zong-Wei | He, Lin-Yan | Sheng, Xia-Fang
In this study, the molecular mechanisms involved in Ralstonia eutropha Q2-8-induced increased biomass and reduced cadmium (Cd) and arsenic (As) uptake in wheat plants (Triticum aestivum cv. Yangmai 16) were investigated in growth chambers. Strain Q2-8 significantly increased plant biomass (22–75%) without and with Cd (5 μM) + As (10 μM) stress and reduced plant above-ground tissue Cd (37%) and As (34%) contents compared to those in the controls. Strain Q2-8 significantly increased the proportions of Cd and As in wheat root cell walls. Under Cd and As stress, 109 root proteins were differentially expressed among which those involved in metabolisms, stress and defence, and energy were dominant in the presence of strain Q2-8. Furthermore, energy-, defence-, and cell wall biosynthesis-related proteins were found to be up-regulated. Notably, differentially expressed cell wall biosynthesis-related proteins in roots were only found in bacteria-inoculated plants under Cd and As stress. The results suggest that strain Q2-8 can alleviate Cd and As toxicity to wheat plant seedlings and reduce above-ground tissue Cd and As uptake by increasing the efficiency of root energy metabolism, defence, and cell wall biosynthesis under Cd and As stress.
Show more [+] Less [-]CO2 reforming of CH4 on Ni-Al-Ox catalyst using pure and coal gas feeds: Synergetic effect of CoO and MgO in mitigating carbon deposition Full text
2018
Alabi, Wahab. O.
Mg-Al-Ox supported monometallic (Ni) and bimetallic (Ni-Co) catalysts with different compositions of Mg and Al were investigated for CO₂ reforming of CH₄, using both coal and pure gas feeds, to limit the emission of these environmental pollutant gases into the atmosphere. Results showed that all the catalysts were active for dry reforming reaction using both feeds. Reactants conversion, stoichiometric product selectivity, and resistance to carbon deposition of catalysts remarkably improved when the Mg/Al ratio was greater than 1. Characterization results revealed changes in the bulk structure, textural and surface properties as the Mg/Al ratio and composition of catalysts changed. Improved active metal reduction, metal-support and metal-metal interaction (in the bimetallic) were also noted in the catalysts with Mg/Al ratio greater than 1. With respect to feed composition, less carbon deposition was recorded in the corresponding catalysts using coal gas compared to the pure gas. Ni-Co interaction and their interaction with MgO facilitated better basicity, increased metal dispersion and smaller particle size in Ni-Co-Mg₁.₇-Al₁-Ox, which showed best catalytic performance with no carbon deposition in both feeds. These interactions and properties stabilized the Ni site, which made the Ni-Co-Mg₁.₇-Al₁-Ox, catalyst resistant to sintering and carbon deposition.
Show more [+] Less [-]Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere Full text
2018
The sources of aerosol ammonium (NH4+) are of interest because of the potential of NH4+ to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH4+ is challenging in the urban atmosphere, which has excess ammonia (NH3) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH4+, with isotopically light (−33.8‰) and heavy (0 to +12.0‰) NH4+ associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37–52% of the initial NH3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH3 and aerosol NH4+. Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions.
Show more [+] Less [-]Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil Full text
2018
Excess exposure to fluoride causes substantive health burden in humans and livestock globally. However, few studies have assessed the distribution and controls of variability of ambient background concentrations of fluoride in soil. Ambient background concentrations of fluoride in soil were collated for Greater Melbourne, Greater Geelong, Ballarat and Mitchell in Victoria, Australia (n = 1005). Correlation analysis and machine learning techniques were used to identify environmental and anthropogenic influences of fluoride variability in soil. Sub-soils (>0.3 m deep), in some areas overlying siltstone and sandstone, and to a lesser extent, overlying basalt, were naturally enriched with fluoride at concentrations above ecological thresholds for grazing animals. Soil fluoride enrichment was predominantly influenced by parent material (mineralogy), precipitation (illuviation), leaching during palaeoclimates and marine inputs. Industrial air pollution did not significantly influence ambient background concentrations of fluoride at a regional scale. However, agricultural practices (potentially the use of phosphate fertilisers) were indicated to have resulted in added fluoride to surface soils overlying sediments. Geospatial variables alone were not sufficient to accurately model ambient background soil fluoride concentrations. A multiple regression model based on soil chemistry and parent material was shown to accurately predict ambient background fluoride concentrations in soils and support assessment of fluoride enrichment in the environment.
Show more [+] Less [-]Optical properties of straw-derived dissolved organic matter and growth inhibition of Microcystis aeruginosa by straw-derived dissolved organic matter via photo-generated hydrogen peroxide Full text
2018
Recent advances in research on algae inhibition by using low-cost straw proposed a possible mechanism that reactive oxygen species (ROS) generated by the solar irradiation of straw-derived dissolved organic matter (DOM) might contribute to cyanobacteria inhibition. However, this process is not clearly understood. Here, DOM from three types of straw (barley, rice, and wheat) and natural organic matter (NOM) isolates were investigated in terms of their photochemical properties and ROS generating abilities. Results demonstrated that the DOM derived from the aeration decomposition of barley straw (A-DOMbs) yielded the best formation efficiencies of hydrogen peroxide (H₂O₂) and hydroxyl radicals (•OH) under solar-simulated irradiation in all organic matter samples. Correlation analysis implies that optical parameters and phenolic hydroxyl group contents can signify ROS generating abilities of different DOM solutions. Bioassay results show that A-DOMbs possesses the highest inhibition performance for M. aeruginosa in all DOM samples, much higher than those of NOM isolates. The addition of catalase greatly relieves the inhibition performance, making the loss of chlorophyll a content decreased from 37.14% to 7.83% in 2 h for A-DOMbs, which implies that for cyanobacteria growth inhibition, photochemically-produced H₂O₂ from SOM is far more important than singlet oxygen (¹O₂), •OH, and even SOM itself. Our results show that H₂O₂ photochemically generated from straw-derived DOM is able to result in rapid inhibition of M. aeruginosa in a relatively short period, furthering the understanding of complicated mechanisms of cyanobacteria inhibition by using low-cost straw in eutrophic waters.
Show more [+] Less [-]Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences Full text
2018
High concentrations of the fine particles (PM₂.₅) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO₂, NO₂, CO, PM₂.₅) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO₂, SO₂, PM₂.₅ and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO₂, PM₂.₅ and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing.
Show more [+] Less [-]Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes – Superior, Huron, and Michigan Full text
2018
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g−1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from <LOQ to 46.6 ng g−1 dm among the three lakes with concentrations typically increasing with time. Distributions of PFASs within dated cores largely corresponded with increase in use of PFASs, but with physiochemical characteristics also affecting distribution. Perfluoroalkyl sulfonates (PFSAs) with chain lengths >7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF).
Show more [+] Less [-]Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation Full text
2018
Zhao, Xiao | Du, Penghui | Cai, Zhengqing | Wang, Ting | Fu, Jie | Liu, Wen
Bisphenol A (BPA) is a widely concerned endocrine disrupting chemical and hard to be removed through conventional wastewater treatment processes. In this study, we developed a TiO2 decorated titanate nanotubes composite (TiO2/TNTs) and used for photocatalytic degradation of BPA. TEM and XRD analysis show that the TiO2/TNTs is a nano-composite of anatase and titanate, with anatase acting as the primary photocatalytic site and titanate as the skeleton. TiO2/TNTs exhibited excellent photocatalytic reactivity and its easy-settling property leaded to good reusability. After 5 reuse cycles, TiO2/TNTs also could photo-degrade 91.2% of BPA with a high rate constant (k1) of 0.039 min⁻¹, which was much better than TiO2 and TNTs. Higher pH facilitated photocatalysis due to more reactive oxygen species produced and less material aggregation. The presence of NaCl and CaCl2 showed negligible effects on BPA degradation, but NaHCO3 caused an inhibition effect resulting from consumption of ·OH. Humic acid inhibited degradation mainly due to blockage of the active sites of TiO2/TNTs. Degradation pathway was well interpreted through theoretical calculation. Hydroxyl radical played the dominate role in BPA photodegradation, and the atoms of BPA with high Fukui index based on density-functional theory (DFT) calculation are the radical easy-attacking (f⁰) sites. Considering the good photocatalytic reactivity, reusability, stability and settle property, TiO2/TNTs promises to be an efficient alternative for removal of organic compounds from wastewaters.
Show more [+] Less [-]Di-(2-ethylhexyl) phthalate enhances melanoma tumor growth via differential effect on M1-and M2-polarized macrophages in mouse model Full text
2018
Yi, Chae-uk | Park, Sojin | Han, Hae-Kyoung | Gye, Myung Chan | Moon, Eun-Yi
Phthalates are widely used as plasticizers that influence sexual and reproductive development. Here, we investigated whether di-(2-ethylhexyl) phthalate (DEHP) affects macrophage polarization that are associated with tumor initiation and progression. No changes were observed in LPS- or ConA-stimulated in vitro spleen B or T cell proliferation for 48 h, respectively. In contrast, macrophage functions were inhibited in response to DEHP for 12 h as judged by LPS-induced H₂O₂ and NO production and zymosan A-mediated phagocytosis. When six weeks old male mice were pre-exposed to 4.0 mg/kg DEHP for 21 days before the injection of B16F10 melanoma cells and post-exposed to 4.0 mg/kg DEHP for 7 days, tumor nodule formation and the changes in tumor volume were higher than those in control group. Furthermore, when male mice were intraperitoneally pretreated with DEHP for 3 or 4 weeks and peritoneal exudate cells (PECs) or bone marrow-derived macrophages (BMDMs) were incubated with lipopolysaccharide (LPS), the expression of COX-2, TNF-α, and IL-6 was reduced in DEHP-pretreated cells as compared with that in LPS-stimulated control cells. While the production of nitric oxide (NO) for 18 h was reduced by LPS-stimulated PECs and M1-type BMDMs, IL-4 expression was enhanced in LPS-stimulated BMDMs. When BMDMs were incubated with IL-4 for 30 h, arginase 1 for M2-type macrophages was increased in transcriptional and translational level. Data implicate that macrophages were differentially polarized by DEHP treatment, which reduced M1-polarzation but enhanced M2-polarization. Taken together, these data demonstrate that DEHP could affect in vivo immune responses of macrophages, leading to the suppression of their tumor-preventing ability. This suggests that individuals at high risk for tumor incidence should avoid long-term exposure to various kind of phthalate including DEHP.
Show more [+] Less [-]