Refine search
Results 621-630 of 8,088
Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses Full text
2021
Satiroff, Jessica A. | Messer, Tiffany L. | Mittelstet, Aaron R. | Snow, Daniel D.
Currently little is known of newer pesticide classes and their occurrence and persistence in recreational lakes. Therefore, the objectives of this study were to (1) assess average pesticide concentrations and loadings entering recreational lakes in three mixed land use watersheds throughout the growing season, (2) evaluate pesticide persistence longitudinally within the lakes, and (3) perform an ecotoxicity assessment. Six sampling campaigns were conducted at three lakes from April through October 2018 to measure the occurrence and persistence during pre, middle, and post growing season. Polar organic chemical integrative samplers (POCIS) were placed in streams near lake inlets and monthly samples were collected for analysis of twelve pesticides. Additional monthly grab water samples were taken at each POCIS location and at the midpoint and outlet of each lake. All pesticide samples were analyzed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and individual pesticide loading rates were determined. Occurrence and persistence of specific pesticides were significantly different between lakes in varying watershed land uses. Specifically, the recreational lake receiving predominately urban runoff had the highest load of pesticides, likely in the form of biocides, entering the waterbody. Concentrations of imidacloprid exceeded acute and chronic invertebrate levels for 11% and 61% of the sampling periods, respectively, with the recreational lake receiving predominately urban runoff having the most occurrences. Findings from this study are critical for preventing and mitigating potential effects of pesticides, specifically applied as biocides in urban landscapes, from entering and persisting in recreational lakes.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations Full text
2021
Yang, Lu | Zhang, Lulu | Chen, Lijiang | Han, Chŏng | Akutagawa, Tomoko | Endo, Osamu | Yamauchi, Masahito | Neroda, Andrey | Toriba, Akira | Tang, Ning
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m⁻³; ∑NPAHs: 1.23 ± 0.96 pg m⁻³) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m⁻³; ∑NPAHs: 357 ± 180 pg m⁻³). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
Show more [+] Less [-]Covalent bonding of aromatic amine daughter products of 2,4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition Full text
2021
Kadoya, Warren M. | Sierra-Alvarez, Reyes | Jagadish, Bhumasamudram | Wong, Stanley | Abrell, Leif | Mash, Eugene A. | Field, Jim A.
2,4-Dinitroanisole (DNAN) is a component of insensitive munitions (IM), which are replacing traditional explosives due to their improved safety. Incomplete IM combustion releases DNAN onto the soil, where it can leach into the subsurface with rainwater, encounter anoxic conditions, and undergo (a)biotic reduction to aromatic amines 2-methoxy-5-nitroaniline (MENA), 4-methoxy-3-nitroaniline (iMENA, isomer of MENA), and 2,4-diaminoanisole (DAAN). We report here studies of nucleophilic addition mechanisms that may account for the sequestration of aromatic amine daughter products of DNAN into soil organic matter (humus), effectively removing these toxic compounds from the aqueous environment. Because quinones are important moieties in humus, we incubated MENA, iMENA, DAAN, and related analogs with model compounds 1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone under anoxic conditions. Mass spectrometry and ultra-high performance liquid chromatography revealed that the aromatic amines had covalently bonded to either carbonyl carbons or ring carbons β to carbonyl carbons of the quinones, producing a mixture of imines and Michael adducts, respectively. These products formed rapidly and accumulated in the one-to four-day incubations. Nucleophilic addition reactions, which do not require catalysis or oxic conditions, are proposed as a mechanism resulting in the binding of DNAN to soil observed in previous studies. To remediate sites contaminated with DNAN or other nitroaromatics, reducing conditions and humus amendments may promote their immobilization into the soil matrix.
Show more [+] Less [-]Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter Full text
2021
Li, Meng | Zhang, Xiangwei | Yi, Kexin | He, Lei | Han, Peng | Tong, Meiping
Natural colloids such as clays and natural organic matter (NOM) are universally present in environments, which could interact with microplastics (MPs) and thus alter the fate and transport of MPs in porous media. The co-effects of clays and NOM on MPs transport in saturated porous media were systematically explored at both low and high ionic strength (IS) conditions. Specifically, bentonite and humic acid (HA) were employed as representative clays and NOM. 5 mM NaCl and 1 mM CaCl₂ solutions were used as low IS conditions, while 25 mM NaCl and 5 mM CaCl₂ solutions were employed as high IS conditions. We found that formation of MPs-bentonite heteroaggregates had great effects on MPs transport under different conditions. Without HA, the small MPs-bentonite heteroaggregates formed under low IS increased MPs transport via serving as mobile carriers, while larger MPs-bentonite heteroaggregates formed at high IS led to the decreased MPs mobility. When both HA and bentonite were copresent in MPs suspension, we found that HA could inhibit the formation of larger sized MPs-bentonite heteroaggregates. Particularly, when the two types of natural colloids copresent in MPs suspensions, MPs transport behaviors were similar to those with only bentonite present in MPs suspensions at low IS, while MPs transport was greatly increased at high IS comparing with those only with bentonite in suspensions. Clearly, without HA in suspensions, bentonite played the dominant role on MPs transport under all examined conditions concerned in this study. Instead, when both HA and bentonite copresent in MPs suspensions, MPs transport was mainly controlled by bentonite at low IS, while both bentonite and HA had major contributions at high IS. The results showed that under solution conditions concerned in present study, MPs mobility in porous media would be greatly affected (either enhanced or inhibited) by the two types of natural colloids.
Show more [+] Less [-]Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study Full text
2021
Nigamatzyanova, Läysän | Fakhrullin, Rawil
Microplastics pollution is a serious ecological threat, severely affecting environments and human health. Tackling microplastics pollution requires an effective methodology to detect minute polymer particles in environmental samples and organisms. Here were report a novel methodology to visualise and identify nanoscale (down to 100 nm) and microscale synthetic commercially-available uniform spherical polymer particles using dark-field hyperspectral microscopy in visible-near infrared (400–1000 nm) wavelength range. Polystyrene particles with diameters between 100 nm–1 μm, polymethacrylate 1 μm and melamine formaldehyde 2 μm microspheres suspended in pure water samples were effectively imaged and chemically identified based on spectral signatures and image-assisted analysis. We succeeded in visualisation and spectral identification of pure and mixed nano- and microplastics in vivo employing optically-transparent Caenorhabditis elegans nematodes as a model to demonstrate the ingestion and tissue distribution of microplastics. As we demonstrate here, dark-field hyperspectral microscopy is capable for differentiating between chemically-different microplastics confined within live invertebrate intestines. Moreover, this optical technology allows for quantitative identification of microplastics ingested by nematodes. We believe that this label-free non-destructive methodology will find numerous applications in environmental nano- and microplastics detection and quantification, investigation of their biodistribution in tissues and organs and nanotoxicology.
Show more [+] Less [-]Exposure of children and mothers to organophosphate esters: Prediction by house dust and silicone wristbands Full text
2021
Xie, Qitong | Guan, Qingxia | Li, Liangzhong | Pan, Xiongfei | Ho, Cheuk-Lam | Liu, Xiaotu | Hou, Sen | Chen, Da
Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.
Show more [+] Less [-]A novel algorithm to determine the scattering coefficient of ambient organic aerosols Full text
2021
Zhu, Wenfei | Guo, Song | Lou, Shengrong | Wang, Hui | Yu, Ying | Xu, Weizhao | Liu, Yucun | Cheng, Zhen | Huang, Xiaofeng | He, Lingyan | Zeng, Limin | Chen, Shiyi | Hu, Min
In the present work, we propose a novel algorithm to determine the scattering coefficient of OA by evaluating the relationships of the MSEs for primary organic aerosol (POA) and secondary organic aerosol (SOA) with their mass concentrations at three distinct sites, i.e. an urban site, a rural site, and a background site in China. Our results showed that the MSEs for POA and SOA increased rapidly as a function of mass concentration in low mass loading. While the increasing rate declined after a threshold of mass loading of 50 μg/m³ for POA, and 15 μg/m³ for SOA, respectively. The dry scattering coefficients of submicron particles (PM₁) were reconstructed based on the algorithm for POA and SOA scattering coefficient and further verified by using multi-site data. The calculated dry scattering coefficients using our reconstructing algorithm have good consistency with the measured ones, with the high correlation and small deviation in Shanghai (R² = 0.98; deviations: 2.9%) and Dezhou (R² = 0.90; deviations: 4.7%), indicating that our algorithms for OA and PM₁ are applicable to predict the scattering coefficient of OA and Submicron particle (PM₁) in China.
Show more [+] Less [-]Microplastic pollution in sophisticated urban river systems: Combined influence of land-use types and physicochemical characteristics Full text
2021
Wang, Ting | Wang, Jialin | Lei, Qi | Zhao, Yaning | Wang, Liqing | Wang, Xianyun | Zhang, Wei
In the past decades, research on water pollution microplastics (MPs) has intensified tremendously. However, the relationship between MPs and environmental factors in urban river networks is under researched. Our study selected 65 sampling sites from a sophisticated urban river network system in Shanghai Municipality, China. Here, the combined influence of land-use types, river width, and water quality parameters to explore MPs distribution patterns. We found that MPs abundance ranged from 0.7 to 24.3 items/L, and the spatial difference in abundance was significant at a limited number of sampling sites. Fibrous MPs were the most abundant MPs in the river system. 72.7% of MPs <3 mm. Of the ten polymers detected, polypropylene and polyethylene terephthalate were predominant. In addition, cotton fiber was the main non-plastic component found in the samples. Moreover, land-use types showed no significant impact on MPs in the buffer zone of the sampling sites. However, point source pollution may cause an abnormal increase in MPs abundance. Through redundant analysis, we found that the phytoplankton abundance (e.g., chlorophyll-a) was influenced by MPs shape, while the river width influence MPs size. Construction activities were identified as the leading point source of pollution for the abnormal increase in local MPs pollution. Our results will inform on MPs distribution patterns in the super-metropolis river system.
Show more [+] Less [-]Air quality and health impact of 2019–20 Black Summer megafires and COVID-19 lockdown in Melbourne and Sydney, Australia Full text
2021
Ryan, Robert G. | Silver, Jeremy D. | Schofield, Robyn
Poor air quality is an emerging problem in Australia primarily due to ozone pollution events and lengthening and more severe wildfire seasons. A significant deterioration in air quality was experienced in Australia’s most populous cities, Melbourne and Sydney, as a result of fires during the so-called Black Summer which ran from November 2019 through to February 2020. Following this period, social, mobility and economic restrictions to curb the spread of the COVID-19 pandemic were implemented in Australia. We quantify the air quality impact of these contrasting periods in the south-eastern states of Victoria and New South Wales (NSW) using a meteorological normalisation approach. A Random Forest (RF) machine learning algorithm was used to compute baseline time series’ of nitrogen dioxide (NO₂), ozone (O₃), carbon monoxide CO and particulate matter with diameter < 2.5 μm (PM₂.₅), based on a 19 year, detrended training dataset. Across Victorian sites, large increases in CO (188%), PM₂.₅ (322%) and ozone (22%) were observed over the RF prediction in January 2020. In NSW, smaller pollutant increases above the RF prediction were seen (CO 58%, PM₂.₅ 80%, ozone 19%). This can be partly explained by the RF predictions being high compared to the mean of previous months, due to high temperatures and strong wind speeds, highlighting the importance of meteorological normalisation in attributing pollution changes to specific events. From the daily observation-RF prediction differences we estimated 249.8 (95% CI: 156.6–343.) excess deaths and 3490.0 (95% CI 1325.9–5653.5) additional hospitalisations were likely as a result of PM₂.₅ and O₃ exposure in Victoria and NSW. During April 2019, when COVID-19 restrictions were in place, on average NO₂ decreased by 21.5 and 8% in Victoria and NSW respectively. O₃ and PM₂.₅ remained effectively unchanged in Victoria on average but increased by 20 and 24% in NSW respectively, supporting the suggestion that community mobility reduced more in Victoria than NSW. Overall the air quality change during the COVID-19 lockdown had a negligible impact on the calculated health outcomes.
Show more [+] Less [-]Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles Full text
2021
Xu, Kui | Li, Zhou | Juneau, Philippe | Xiao, Fanshu | Lian, Yingli | Zhang, Wei | Shu, Longfei | Jiang, Haibo | Zhang, Keke | Wang, Cheng | Wang, Shanquan | Ngan, A. H. W. | He, Zhili
An increasing production and use of titanium dioxide nanoparticles (TiO₂ NPs) pose a huge threat to phytoplankton since they are largely released into aquatic environments, which represent a sink for TiO₂ NPs. However, toxicity and protective mechanisms of cyanobacteria in response to TiO₂ NPs remain elusive. Here we investigated toxic effects of two sizes of TiO₂ NPs (50 and 10 nm) and one bulk TiO₂ (200 nm) on a cyanobacterium, Synechocystis sp. and their possible protective mechanisms. We found that 10 nm TiO₂ NPs caused significant growth and photosynthesis inhibition in Synechocystis sp. cells, largely reflected in decreased growth rate (38%), operational PSII quantum yields (40%), phycocyanin (51%) and allophycocyanin (63%), and increased reactive oxygen species content (245%), superoxide dismutase activity (46%). Also, transcriptomic analysis of Synechocystis sp. exposure to 10 nm TiO₂ NPs showed the up-regulation of D1 and D2 protein genes (psbA and psbD), ferredoxin gene (petF) and F-type ATPase genes (e.g., atpB), and the down-regulation of psbM and psb28-2 in PS II. We further proposed a conceptual model to explore possible toxic and protective mechanisms for Synechocystis sp. under TiO₂ nanoparticle exposure. This study provides mechanistic insights into our understanding of Synechocystis sp. responses to TiO₂ NPs. This is essential for more accurate environmental risk assessment approaches of nanoparticles in aquatic ecosystems by governmental environmental agencies worldwide.
Show more [+] Less [-]