Refine search
Results 621-630 of 7,288
Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter Full text
2022
Li, Tong | Jin, Lili | Zhu, Shanshan | Zhang, Xuxiang | Ren, Hongqiang | Huang, Hui
It is difficult to achieve simultaneous and efficient removal of heterocyclic drugs (HCDs) and total nitrogen (TN) in conventional denitrification biofilter (DNBF). Inspired by the effective degradation of refractory organic matter by cobalt-based advanced oxidation process and the need for in-situ upgrading of DNBF, peracetic acid (PAA)/cobalt-loaded ceramsite-based DNBF system was constructed for the first time to treat biochemical tailwater containing HCDs. Results showed that PAA/Co-DNBF had relatively high removal rates for the four HCDs with the order of CBZ > TMP > SDZ > SMX, and the optimal DNBF was H2 with 150 μg L⁻¹of PAA. Overall, TN and HCDs removal increased by 178%–455% and 2.50%–40.99% respectively. When the influent concentration of NO₃⁻-N, COD and each HCDs of 20 mg/L, 60 mg/L and 20 μg/L, below 15 mg/L of effluent TN and the highest average removal rate of SMX (67.77%) could be achieved, under HRT of 4 h in H2. More even distribution of microbial species and low acute toxicity of effluent were also achieved. More even distribution of microbial species and low acute toxicity of effluent were also achieved. In addition, high extracellular polymeric substance (EPS) content and Gordonia after the addition of PAA contributed to the degradation of HCDs. This study supplied a potentially effective strategy for the treatment of biochemical tailwater containing HCDs and provided new insight into the advance of denitrification technology.
Show more [+] Less [-]Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains Full text
2022
Sun, Tao | Xie, Qing | Li, Chuxian | Huang, Jinyong | Yue, Caipeng | Zhao, Xuejie | Wang, Dingyong
Both inorganic and organic fertilizers are widely used to increase rice yield. However, these fertilizers are also found to aggravate mercury methylation and methylmercury (MeHg) accumulation in paddy fields. The aim of this study was to reveal the mechanisms of inorganic and organic fertilizers on MeHg accumulation in rice grains, which are not yet well understood. Potting cultures were conducted in which different fertilizers were applied to a paddy soil. The results showed that both inorganic and organic fertilizers increased MeHg concentrations rather than biological accumulation factors (BAFs) of MeHg in mature rice grains. Inorganic fertilizers, especially nitrogen fertilizer, enhanced the bioavailability of mercury and the relative amount Hg-methylating microbes and therefore intensified mercury methylation in paddy soil and MeHg accumulation in rice grains. Unlike inorganic fertilizers, organic matter (OM) in organic fertilizers was the main reason for the increase of MeHg concentrations in rice grains, and it also could immobilize Hg in soil when it was deeply degraded. The enhancement of MeHg concentrations in rice grains induced by inorganic fertilizers (5.18–41.69%) was significantly (p < 0.05) lower than that induced by organic fertilizers (80.49–106.86%). Inorganic fertilizers led to a larger increase (50.39–99.28%) in thousand-kernel weight than MeHg concentrations (5.18–41.69%), resulting in a dilution of MeHg concentrations in mature rice grains. Given the improvement of soil properties by organic fertilizer, increasing the proportion of inorganic fertilizer application may be a better option to alleviate MeHg accumulation in rice grains and guarantee the rice yield in the agricultural production.
Show more [+] Less [-]Relationship between thyroid hormone parameters and exposure to a mixture of organochlorine pesticides, mercury and nutrients in the cord blood of newborns Full text
2022
Wang, Ju | Cao, Lu-Lu | Gao, Zhen-Yan | Zhang, Hong | Liu, Jun-Xia | Wang, S. S. (Su Su) | Pan, Hui | Yan, Chong-Huai
The fetus is prenatally exposed to a mixture of organochlorine pesticides (OCPs), mercury (Hg), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and selenium (Se) through maternal seafood consumption in real-life scenario. Prenatal exposure to these contaminants and nutrients has been suggested to affect thyroid hormone (TH) status in newborns, but the potential relationships between them are unclear and the joint effects of the mixture are seldom analyzed. The aim of the study is to investigate the associations of prenatal exposure to a mixture of OCPs, Hg, DHA, EPA and Se with TH parameters in newborns. 228 mother-infant pairs in Shanghai, China were included. We measured 20 OCPs, total Hg, DHA, EPA and Se in cord blood samples as exposure variables. The total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) levels and the FT3/FT4 ratio in cord serum were determined as outcomes. Using linear regression models, generalized additive models and Bayesian kernel machine regression, we found dose-response relationships of the mixture component with outcomes: among the contaminants, p,p'-DDE was the most important positive predictor of TT3, while HCB was predominantly positively associated with FT3 and the FT3/FT4 ratio, indicating different mechanisms underlying these relationships; among the nutrients, EPA was first found to be positively related to the FT3/FT4 ratio. Additionally, we found suggestive evidence of interactions between p,p'-DDE and HCB on both TT3 and FT3, and EPA by HCB interactions for TT3, FT3 and FT3/FT4 ratio. However, the overall effects of the mixture on thyroid hormone parameters were not significant. Our result suggests that prenatal exposure to p,p’-DDE, HCB and EPA as part of a mixture might affect thyroid function of newborns in independent and interactive ways. The potential biological mechanisms merit further investigation.
Show more [+] Less [-]Toxicity and endocrine-disrupting potential of PM2.5: Association with particulate polycyclic aromatic hydrocarbons, phthalate esters, and heavy metals Full text
2022
Zhou, Qinghua | Chen, Jinyuan | Zhang, Junfan | Zhou, Feifei | Zhao, Jingjing | Wei, Xiuzhen | Zheng, Kaiyun | Wu, Jian | Li, Bingjie | Pan, Bingjun
The adverse effects of fine atmospheric particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) are closely associated with particulate chemicals. In this study, PM₂.₅ samples were collected from highway and industry sites in Hangzhou, China, during the autumn and winter, and their cytotoxicity and pulmonary toxicity and endocrine-disrupting potential (EDP) were evaluated in vitro and in vivo; the particulate polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and heavy metals were then characterized. The toxicological results suggested that the PM₂.₅ from highway site induced higher cytotoxicity (cell viability inhibition, intracellular oxidative stress, and cell membrane injury) and pulmonary toxicity (inflammatory response (IR) and oxidative stress (OS)) than the samples from industry site, while the PM₂.₅ from industry site exhibited higher EDP (estrogenic and anti-androgenic activity). The cytotoxicity and pulmonary toxicity of PM₂.₅ in the winter were higher than those in the autumn, while no seasonal difference in the endocrine-disrupting potential was observed (p > 0.05). The Pearson correlation analysis between the biological effects and particulate chemicals revealed that the PM₂.₅-induced inflammatory response and oxidative stress were closely associated with the particulate PAHs and heavy metals (Pearson correlation coefficients: rIR, PAHₛ = 0.822–0.988, rIR, ₕₑₐᵥy ₘₑₜₐₗₛ = 0.895–0.971, rOS, PAHₛ = 0.843–0.986, and rOS, ₕₑₐᵥy ₘₑₜₐₗₛ = 0.887–0.933), while particulate di (2-ethylhexyl)phthalate (DEHP) substantially contributed to the EDP of PM₂.₅ (rEDP, DEHP = 0.981). This study indicated that the toxicity and EDP of PM₂.₅ could vary with the surrounding environment and season, which was closely associated with the variations of particulate chemicals. Further studies are needed to clarify the associations between the harmful effects of PM₂.₅ and other contributing factors.
Show more [+] Less [-]The relationship between greenspace and personal exposure to PM2.5 during walking trips in Delhi, India Full text
2022
Mueller, William | Wilkinson, Paul | Milner, James | Loh, Miranda | Vardoulakis, Sotiris | Petard, Zoë | Cherrie, Mark | Puttaswamy, Naveen | Balakrishnan, Kalpana | Arvind, D.K.
The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mechanisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored continuously for exposure to PM₂.₅ (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed the relationship between greenspace and personal PM₂.₅ using different spatial scales of the mean Normalised Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM₂.₅ personal exposure of 133.9 (standard deviation = 114.8) μg/m³. The within-trip analysis showed weak inverse associations between greenspace markers and PM₂.₅ concentrations only in the spring/summer/monsoon season, with statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. Associations between greenspace and personal PM₂.₅ during walking trips in Delhi varied across metrics, spatial scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being dominated by walking along roads and small effects on PM₂.₅ of small pockets of greenspace. Larger areas of greenspace may, however, give rise to observable spatial effects on PM₂.₅, which vary by season.
Show more [+] Less [-]Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank Full text
2022
Sheridan, Charlotte | Klompmaker, Jochem | Cummins, Steven | James, Peter | Fecht, Daniela | Roscoe, Charlotte
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March–December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006–2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM₂.₅) and nitrogen dioxide (NO₂) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM₁₀ were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM₂.₅ and NO₂ was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Show more [+] Less [-]Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize Full text
2022
Zhang, Hao | Qian, Yingying | Fan, Dandan | Tian, Yanning | Huang, Xing
Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0–22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.
Show more [+] Less [-]Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park Full text
2022
Weng, Jiyuan | Zhang, Peixuan | Gao, Lirong | Zhu, Shuai | Liu, Yang | Qiao, Lin | Zhao, Bin | Liu, Yin | Xu, Ming | Zheng, Minghui
Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121–5159 ng/g and 47–6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C₁₀Cl₆–₇ and C₁₅–₁₆Cl₅, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.
Show more [+] Less [-]Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L Full text
2022
Sarath, Nair G. | Shackira, A.M. | El-Serehy, Hamed A. | Hefft, Daniel Ingo | Puthur, Jos T.
The carcinogenic attribute of arsenic (As) has turned the world to focus more on the decontamination and declining the present level of As from the environment especially from the soil and water bodies. Phytoremediation has achieved a status of sustainable and eco-friendly approach of decontaminating pollutants, and in the present study, an attempt has been made to reveal the potential of As remediation by a halophyte plant, Acanthus ilicifolius L. Special attention has given to analyse the morphological, physiological and anatomical modulations in A. ilicifolius, developed in response to altering concentrations of Na₂AsO₄.7H₂O (0, 70, 80 and 90 μM). Growth of A. ilicifolius under As treatments were diminished as assessed from the reduction in leaf area, root length, dry matter accumulation, and tissue water status. However, the plants exhibited a comparatively higher tolerance index (44%) even when grown in the higher concentrations of As (90 μM). Arsenic treatment induced reduction in the photochemical activities as revealed by the pigment content, chlorophyll stability index (CSI) and Chlorophyll a fluorescence parameter. Interestingly, the thickness and diameter of the xylem walls in the leaf as well as root tissues of As treated samples increased upon increasing the As concentration. The adaptive strategies exhibited by A. ilicifolius towards varying concentrations of As is the result of coordinated responses of morpho-physiological and anatomical attributes, which make the plant a promising candidate for As remediation, especially in wetlands.
Show more [+] Less [-]Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure Full text
2022
Park, Jungeun | Kim, Yurim | Jeon, Hwang-Ju | Kim, Kyeongnam | Kim, Chaeeun | Lee, Seungki | Son, Jino | Lee, Sung-Eun
Polyhalogenated polycyclic aromatic hydrocarbons (HPAHs) represent a major environmental concern due to their persistency and toxicity. Among them, mono-halogenated (HNs) and halomethyl naphthalenes (HMNs) are not well-studied, and the toxicity of many HNs to fishes has not been reported. In this study, we exposed zebrafish (Danio rerio) embryos to naphthalene and five HNs at concentrations ranging from 0.25 to 2.0 mg L⁻¹ to assess acute toxicities and developmental effects. Among them, 2-bromomethyl naphthalene (2-BMN) produced moderate lethal effects (96-h LC₅₀ = 1.4 mg L⁻¹) and significantly reduced hatchability. Abnormal phenotypes, including pericardial edema, spine curvature, and shortened body length, were also induced by 2-BMN (96-h EC₅₀ = 0.45 mg L⁻¹). Treatments of 0.5–2.0 mg L⁻¹ 2-BMN evoked cardiac malformations via significant down-regulation of the cacna1c gene, which codes the voltage-dependent calcium channel, at 72 hpf and up-regulation of the nppa gene, responsible for the expression of natriuretic peptides, at 96 hpf in zebrafish. One presumable toxic photo-dissociated metabolite of 2-BMN, the 2-naphthylmethyl radical, may be responsible for the toxic effect on zebrafish embryos. HPAHs must be monitored and managed due to their adverse effects on living organisms at low concentrations.
Show more [+] Less [-]