Refine search
Results 641-650 of 4,241
Development of passive samplers for in situ measurement of pyrethroid insecticides in surface water
2017
Xue, Jiaying | Liao, Chunyang | Wang, Jie | Cryder, Zachary | Xu, Tianbo | Liu, Fengmao | Gan, Jay
Pyrethroid insecticides are widely used in urban environments, and their occurrence has been recently associated with aquatic toxicity in urban surface streams. Synthetic pyrethroids are strongly hydrophobic compounds, highlighting the importance of the freely dissolved concentration (Cfree), rather than the total chemical concentration, for better prediction of potential effects in aquatic ecosystems. The goal of this study was to develop a simple, robust and field-applicable passive sampling methodology that may be used for in situ monitoring of trace levels of pyrethroids in surface water. Among a range of polymer films, polyethylene film (PE) was found to be the most efficient at absorbing pyrethroids from water. To circumvent the long equilibrium time, 13C-permethrin and bifenthrin-d5 were preloaded on the PE sampler as performance reference compounds (PRC). Desorption of isotope-labeled PRCs was found to be isotropic to the absorption of target analytes. The optimized method was first tested in large circulating tanks simulating various environmental conditions. The derived Cfree values were consistently smaller than the total aqueous concentration in salt water or water containing humic acids. The PE samplers were further deployed at multiple field sites for 7 d in Southern California and analysis demonstrated good monitoring reproducibility and sensitivity under ambient environmental conditions. The developed passive sampler approach is ideal for application for in situ sampling under field conditions, and the use of PRCs allows sampling with short and flexible time intervals.
Show more [+] Less [-]Water metagenomic analysis reveals low bacterial diversity and the presence of antimicrobial residues and resistance genes in a river containing wastewater from backyard aquacultures in the Mekong Delta, Vietnam
2017
Nakayama, Tatsuya | Tuyet Hoa, Tran Thi | Harada, Kazuo | Warisaya, Minae | Asayama, Megumi | Hinenoya, Atsushi | Lee, Joon Won | Phu, Tran Minh | Ueda, Shuhei | Sumimura, Yoshinori | Hirata, Kazumasa | Phuong, Nguyen Thanh | Yamamoto, Yoshimasa
The environmental pathways for the dissemination of antibiotic resistance have recently received increased attention. Aquatic environments act as reservoirs or sources of antimicrobial-resistant bacteria, antimicrobial residues, and antimicrobial resistance genes (ARGs). Therefore, it is imperative to identify the role of polluted water in the dissemination of antimicrobial resistance. The aim of this study was to evaluate the antimicrobial residues, ARGs, and microbiota in the freshwater systems of the Mekong Delta. We selected 12 freshwater sites from aquacultures and rivers in Can Tho, Vietnam and analyzed them for 45 antimicrobial residues and 8 ARGs by LC/MS/MS and real-time PCR, respectively. A 16S rDNA-based metagenomic analysis was conducted to characterize the water microbiota. Residues of sulfamethoxazole (10/12) and sulfadimidine (7/12) were widely detected, together with the sulfa-resistance genes sul1 (11/12) and sul2 (9/12). Additionally, sulfamethoxazole residues and the β-lactamase-resistance gene blaCTX-M-1 were detected in eight freshwater systems (8/12), suggesting that these freshwater systems may have been polluted by human activity. The metagenomic analysis showed that all the tested freshwater systems contained the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, representing 64% of the total microbiota. Moreover, the Cai Rang River site (Ri-E), which is located at the merge point of wastewaters from backyard-based aquacultures, contained the genera Polynucleobacter, Variovorax, and Limnohabitans, representing more than 78.4% of the total microbiota. Bacterial diversity analysis showed that the Ri-E exhibited the lowest diversity compared with other regions. Principal coordinate analysis showed that the differences among water microbiotas in backyard-based aquacultures could be explained by the farmers' aquaculture techniques.In conclusion, this study demonstrated a collapse of bacterial diversity at the merge point of wastewaters from backyard-based aquacultures in the Mekong Delta.
Show more [+] Less [-]A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments
2017
Ahmadi, Fardin | Sparham, Chris | Pawliszyn, Janusz
In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log KDOC) ranged from 20 to 98% and 3.71–6.72, respectively. Furthermore, sediment-water partition coefficients (Kd), organic-carbon normalized partition coefficients (Log KOC), and DOC distribution coefficients (Log KDOC) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31–5.24 and 4.52–5.75 Lkg-1, respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log KOW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment.
Show more [+] Less [-]Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island
2017
Liu, Xin | Wang, Shuai | Jiang, Yishan | Sun, Yingtao | Li, Jun | Zhang, Gan
Transformation from natural forests to planted forests in tropical regions is an expanding global phenomenon causing major modifications of land cover and soil properties, e.g. soil organic carbon (SOC). This study investigated accumulations of POPs in soils under eucalyptus and rubber forests as compared with adjacent natural forests on Hainan Island, China. Results showed that due to the greater forest filter effect and the higher SOC, the natural forest have accumulated larger amounts of POPs in the top 20 cm soil. Based on correlation and air-soil equilibrium analysis, we highlighted the importance of SOC in the distribution of POPs. It is assumed that the elevated mobility of POPs in the planted forests was caused by greater loss of SOC and extensive leaching in the soil profile. This suggests that a better understanding of global POPs fate should take into consideration the role of planted forests.
Show more [+] Less [-]Temporal trends of chlorinated paraffins and polychlorinated biphenyls in Swiss soils
2017
Bogdal, Christian | Niggeler, Nadja | Glüge, Juliane | Diefenbacher, Pascal S. | Wachter, Daniel | Hungerbühler, Konrad
Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), are ubiquitous environmental contaminants that have been targeted by national regulations since the 1970–1980s, followed in 2004 by the worldwide regulation under the Stockholm Convention on POPs. However, concerns are growing regarding the emergence of additional POP-like substances, such as chlorinated paraffins (CPs), which have particularly large production volumes. Whereas short-chain CPs (SCCPs) have recently been restricted in Europe and are currently under evaluation for inclusion into the Stockholm Convention, medium-chain CPs (MCCPs) have received little attention. On the one hand, temporal trends of CPs in the environment have hardly been investigated. On the other hand, the effectiveness of the Stockholm Convention on environmental levels of PCBs is still a matter of debate. Here, we reconstructed temporal trends of SCCPs, MCCPs, and PCBs in archived soil samples from six sampling sites in Switzerland, covering the period 1989–2014 (respectively 1988–2013 for one site). Concentrations of SCCPs have decreased in soil since 1994, which indicates positive effects of the reduction of production of SCCPs in Europe and the increasingly stringent regulation. However, the decline in soil is slow with a halving time of 18 years. Concentrations of MCCPs have continuously increased in soil over the entire period 1989–2014, with a doubling between 2009 and 2014. The concentrations of MCCPs have surpassed those of SCCPs, showing their relevance today, partly as replacements for SCCPs. Soil concentrations of PCBs peaked in 1999, i.e. three decades later than worldwide production and use of PCBs, but earlier than the entry into force of the Stockholm Convention. PCBs follow a decline in soil with a halving time of approx. 8 years. This study shows the usefulness of sample archives for the reconstruction and interpretation of time trends of persistent environmental contaminants.
Show more [+] Less [-]Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community
2017
Liu, Hui | Zhang, Baogang | Yuan, Heyang | Cheng, Yutong | Wang, Song | He, Zhen
Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO3−, Fe3+, SO42− and CO2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO3− slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO3−. The addition of Fe3+, SO42−, or CO2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe3+, SO42− and CO2 decreased microbial diversity and evenness, whereas the reactor supplied with NO3− showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater.
Show more [+] Less [-]Evaluation of the water quality of the upper reaches of the main Southern Brazil river (Iguaçu river) through in situ exposure of the native siluriform Rhamdia quelen in cages
2017
Souza-Bastos, Luciana R. | Bastos, Leonardo P. | Carneiro, Paulo Cesar F. | Guiloski, Izonete C. | Silva de Assis, Helena C. | Padial, André A. | Freire, Carolina A.
Increase in industrial growth, urban and agricultural pollution, with consequent impacts on aquatic ecosystems are a major focus of research worldwide. Still, not many studies assess the impacts of contamination through in situ studies, using native species, also considering the influence of seasonality on their responses. This study aimed to evaluate the water quality of the basin of the Upper Iguaçu River, the main source of water supply to Curitiba, a major capital of Southern Brazil, and its Metropolitan area. Several biomarkers were evaluated after in situ exposure of the native catfish Rhamdia quelen inside cages for 7 days. Ten study sites were chosen along the basin, based on a diffuse gradient of contamination, corresponding to regions upstream, downstream, and within “great Curitiba”. In each site, fish were exposed in Summer and Winter. The complex mixture of contaminants of this hydrographic basin generated mortality, and ion-, osmoregulatory and respiratory disturbances in the catfish as, for example, reduction of plasma osmolality and ionic concentrations, increased hematocrit levels and gill water content, altered branchial and renal activities of the enzyme carbonic anhydrase, as well as raised levels of plasma cortisol and glucose. Biomarkers were mostly altered in fish exposed in Great Curitiba and immediately downstream. There was a notable influence of season on the responses of the jundiá. A multivariate redundancy analysis revealed that the best environmental variables explained 30% of the variation in biomarkers after controlling for spatial autocorrelation. Thus, this approach and the chosen parameters can be satisfactorily used to evaluate contamination environments with complex mixtures of contaminants, in other urban basins as well.
Show more [+] Less [-]Response of soil microbial communities and microbial interactions to long-term heavy metal contamination
2017
Li, Xiaoqi | Meng, Delong | Li, Juan | Yin, Huaqun | Liu, Hongwei | Liu, Xueduan | Cheng, Cheng | Xiao, Yunhua | Liu, Zhenghua | Yan, Mingli
Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions.
Show more [+] Less [-]Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils
2017
Huang, Junxing | Liang, Chuanzhou | Zhang, Xu
The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO2. The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO2. The adsorption of racemic-metalaxyl on SiO2 decreased to some extent in soil-SiO2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO2 in soil-SiO2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO2 in the presence of soil. Interactions between SiO2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO2, and the interactions were analyzed by extended Derjaguin–Landau–Verwey–Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions.
Show more [+] Less [-]Aging of microplastics promotes their ingestion by marine zooplankton
2017
Vroom, Renske J.E. | Koelmans, Albert A. | Besseling, Ellen | Halsband, Claudia
Microplastics (<5 mm) are ubiquitous in the marine environment and are ingested by zooplankton with possible negative effects on survival, feeding, and fecundity. The majority of laboratory studies has used new and pristine microplastics to test their impacts, while aging processes such as weathering and biofouling alter the characteristics of plastic particles in the marine environment. We investigated zooplankton ingestion of polystyrene beads (15 and 30 μm) and fragments (≤30 μm), and tested the hypothesis that microplastics previously exposed to marine conditions (aged) are ingested at higher rates than pristine microplastics. Polystyrene beads were aged by soaking in natural local seawater for three weeks. Three zooplankton taxa ingested microplastics, excluding the copepod Pseudocalanus spp., but the proportions of individuals ingesting plastic and the number of particles ingested were taxon and life stage specific and dependent on plastic size. All stages of Calanus finmarchicus ingested polystyrene fragments. Aged microbeads were preferred over pristine ones by females of Acartia longiremis as well as juvenile copepodites CV and adults of Calanus finmarchicus. The preference for aged microplastics may be attributed to the formation of a biofilm. Such a coating, made up of natural microbes, may contain similar prey as the copepods feed on in the water column and secrete chemical exudates that aid chemodetection and thus increase the attractiveness of the particles as food items. Much of the ingested plastic was, however, egested within a short time period (2–4 h) and the survival of adult Calanus females was not affected in an 11-day exposure. Negative effects of microplastics ingestion were thus limited. Our findings emphasize, however, that aging plays an important role in the transformation of microplastics at sea and ingestion by grazers, and should thus be considered in future microplastics ingestion studies and estimates of microplastics transfer into the marine food web.
Show more [+] Less [-]